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Exercise 1 Show that every nonnegative integer n has a decimal expansion of the form
n = aklok + ak,110k_1 + -4+ agp,

with ag,...,axr € {0,...9}.

Solution We first state and prove Euclid’s Division Algorithm. Let a,b be nonnegative integers, b # 0.
Then there exist unique integers ¢, r such that a = bg + r and 0 < r < b. To prove this, consider the set
S={a—qgb:a—qb>0,q€Z}. Now,a=a—0b€ S, so S is a non-empty set of nonnegative integers.
Thus, it has a minimal element (Well Ordering Principle), say r = a — gb > 0 for some ¢ € Z. Thus,
a =bq+r. Now, if r > b, then r —b =a — (¢ + 1)b > 0, which contradicts the minimalilty of  in S.
This forces 0 < r < b.

We must now show that ¢, r are unique. Let a = bg’ + r’ for some integers ¢’, 7" where 0 < 7’ < b. Now,
blg—¢)+(r—7)=a—a=0,s0blqg—¢)=r"—r. Suppose ¢ — ¢ # 0. Then, |b(qg—¢')| > |b| = b,
but we already have |r' — r| < b, which is a contradiction. Hence, ¢ = ¢, so r = ' and our solution is
unique.

Note that if a = 0, then ¢ = r = 0. Otherwise, 0 < a =bg+r < bg+b="b(g+ 1), so ¢ > 0. Thus, it is
possible to reiterate this process by using ¢ as our new a.

With this, we supply an algorithm to obtain the coefficients a;. Set n = ng. If n = 0, then we are done,
trivially (ag = k = 0). Otherwise, use Euclid’s Division Algorithm to write n; = 10n;41 4+ a; and iterate
over i € {0,1,2,...,k} while n; is positive. This process must terminate, since n;11 = (n; —a;)/10 < n;,
and the number of integers between 0 and nyg is finite. Thus, we obtain the integers {a;} where 0 < a; <
10, and

n=ag+ 10n; = ag + 10(ay + 10ng) = --- = ag + 10(a1 + 10(az +...10(ax—1 + 10ng)...)).

We iterated while n; was positive, so when we stopped, ni > 0, and ngy+; < 0. We have already shown
that the quotient ¢ > 0 when a > 0, so ngy1 > 0. This forces ng1 = 0, so ng = 10(0) + ar = ay, where
0 < ar, < 10. Thus, we distribute terms to obtain

n = ag + 10a; + 10%ay + - - - + 10¥ay,,

as desired. Note that this also establishes the uniqueness of this representation, since any representation
in base 10 demands n = ag + 10(a; + 10as +10%a3 + - - - + 10" 1ay,), where 0 < ag < 10. Euclid’s Division
Algorithm guarantees the uniqueness of ag as well as the quotient n; = a; + 10ag + - - - + 10¥~1ay, upon
which we recursively repeat the same argument.

Exercise 2 Let A, B C Q be two non-empty subsets such that every rational number is either in A or
in B, and if a € A and b € B, then a < b. Prove that there is a unique real number « such that every
rational number less than « is in A and every rational number greater than « is in B.

Solution Note that A and B are subsets of R. Since B is non-empty, we choose some b € B which is
an upper bound for A since a < b for all a € A. Thus, A has a supremum. We claim that o = sup A
satisfies the desired properties, i.e. if x < a < y for some z,y € Q, then z € A and y € B.

Let x < «a for x € Q. This must be in exactly one of A and B. If it were in B, then for any a € A, we
have a < x. Thus, x is an upper bound of A. On the other hand, « is the least upper bound, so we must
have o < z, which is a contradiction. Thus, x € A.



Let a < y for y € Q. Again, this must be in exactly one of A and B. If it were in A, that would force
y < « since « is an upper bound, which is a contradiction. Thus, y € B.

It remains to show that « is unique. Suppose g € R also satisfies the desired properties. If 8 < «, then
we find a rational number p such that 8 < p < « using the density of the rationals in the reals. This is a
contradiction, since p < « implies that p € A, but 8 < p implies that p € B. Similarly, if 5 > «, we find
a rational number ¢ such that 5 > ¢ > «, which is a contradiction again, since 8 > ¢ implies that ¢ € A
but g > « implies that ¢ € B. Thus, the only possibility is & = 3. Hence, the real number satisfying the
desired properties is unique.

Exercise 3 Let x be a positive real number and let
Se = {x,ml/z,ml/B,...,xl/",...}.
Show that inf S, =1ifz >1andsupS, =1if z < 1.

Solution Note that S, C R. First, we take the case that > 1. Note that z*/™ > 1 because

(@)@ = @Y @ =an

n times n times
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by commutativity of multiplication. From the uniqueness of positive nt® roots, we have

(V™). (VY = > 1,
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n times

which is only possible if '/ > 1. This means that S, is bounded below, and thus has an infimum. We
now show that inf S, = 1, i.e. given any ¢ > 0, we must find some s € S, such that 1 < s <1+ ¢€. By
the Archimedean property, we find n € N such that ne > x, and we claim that 1 < z'/" < 1+e€. To
prove this, set #'/™ =1+ h, where h > 0. Using the binomial theorem,

1
ac:(xl/")”:(1+h)":1+nh+§n(n—1)h2+--~>1—|—nh>nh.
Thus, h < z/n <€, 50 1 <z'/" <1+ x/n<1+eas desired.

If x < 1, note that 1/ > 1, so infS;,, = 1. By a similar argument as before, we have gt/ < 1
for all n € N, so S, is bounded above and has a supremum. Also, note that S;,, = {1/s : s € S}

because l/xl/" = (l/x)l/”. Using the property proved in Assignment I, Exercise 5, we must have
(sup S;) - (inf Sy /) = 1, thus sup S, = 1.

In the special case that = 1, note that the positive n'® root of 1 are all 1 as 1™ = 1 for all n € N. Thus,
S1 = {1}, whose supremum and infimum are both trivially 1.

Exercise 4

(a) For a, B € Q with a < 8 and for x € R+, show that 2 < x5.

Solution Let @« = m/q and § = n/q, for integers m,n,q, where ¢ > 0 is chosen as a common
denominator. Note that we must have m < n. Also note that for any y > 1, we must have y*/¢ > 1,
because

WP =Y. ) =y >1.
[ —
q times

Note that by definition, y*/? is the unique positive real r such that 7? = y. Now, since n —m > 0,
we have



Hence, ("~™)/7 > 1. Now, using the definition z%/® = (96“)1/”7 we have

p(n=m)/a _ (xnfm)l/q _ (xnzfm)l/q — a4 — B 5 .

Since, 7% = 1/2%, we multiply 2 on both sides, obtaining 2” > 2%, as desired.

For a,b € R with a > 0, let
a® :=sup{a’ : t € Q,t < b}.

For z,y € R with x > 1 and y > 0, let
log, y :=sup{s:se€Qz’ <y}
Show that

218 Y =y,

Solution Let z,y € R be fixed. We must show that sup S = y, where
S={2z':tcQt<sup{s:secQz’<y}}

Also set
T={s:s€Q,z’ <y}

Pick an arbitrary element from S, say z! for some t € Q. Note that ¢t < sup T, so there exists an
element of T, say some s € Q, such that t < s < supT. Thus, from our previous exercise, we have
at < 2%, Also, since s € T, we have z° < y. Thus, ¢ < y for all elements z* € S, so y is indeed
an upper bound of S. This means that S has a supremum sup .S < y. Note that since z > 1, any

xzt >0, s0 supS > 0.

Suppose that 0 < supS =y’ < y. Then, 1 < y/y/, so from Exercise 3, we find n € N such that

i.e. z'/"y’ < y. Now, we pick t € Q such that

1
supT — — <t <supT.
n

Note that this means that ¢t € T, and that supT < t+1/n ¢ T. Thus, 2* € S, so 2! <sup S =y/'.
Thus, 2t/ < z'/7y < 4. However, this means that ¢ + 1/n € T, which is a contradiction. Thus,

there exist no such 3, so sup S > y > sup S, proving that sup S = y.



