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Exercise 1 Show that every nonnegative integer n has a decimal expansion of the form

n = ak10
k + ak−110

k−1 + · · ·+ a0,

with a0, . . . , ak ∈ {0, . . . 9}.

Solution We first state and prove Euclid’s Division Algorithm. Let a, b be nonnegative integers, b 6= 0.
Then there exist unique integers q, r such that a = bq + r and 0 ≤ r < b. To prove this, consider the set
S = {a− qb : a− qb ≥ 0, q ∈ Z}. Now, a = a− 0b ∈ S, so S is a non-empty set of nonnegative integers.
Thus, it has a minimal element (Well Ordering Principle), say r = a − qb ≥ 0 for some q ∈ Z. Thus,
a = bq + r. Now, if r ≥ b, then r − b = a − (q + 1)b ≥ 0, which contradicts the minimalilty of r in S.
This forces 0 ≤ r < b.
We must now show that q, r are unique. Let a = bq′ + r′ for some integers q′, r′ where 0 ≤ r′ < b. Now,
b(q − q′) + (r − r′) = a − a = 0, so b(q − q′) = r′ − r. Suppose q − q′ 6= 0. Then, |b(q − q′)| > |b| = b,
but we already have |r′ − r| < b, which is a contradiction. Hence, q = q′, so r = r′ and our solution is
unique.

Note that if a = 0, then q = r = 0. Otherwise, 0 < a = bq + r < bq + b = b(q + 1), so q ≥ 0. Thus, it is
possible to reiterate this process by using q as our new a.

With this, we supply an algorithm to obtain the coefficients ai. Set n = n0. If n = 0, then we are done,
trivially (a0 = k = 0). Otherwise, use Euclid’s Division Algorithm to write ni = 10ni+1 + ai and iterate
over i ∈ {0, 1, 2, . . . , k} while ni is positive. This process must terminate, since ni+1 = (ni−ai)/10 < ni,
and the number of integers between 0 and n0 is finite. Thus, we obtain the integers {ai} where 0 ≤ ai <
10, and

n = a0 + 10n1 = a0 + 10(a1 + 10n2) = · · · = a0 + 10(a1 + 10(a2 + . . . 10(ak−1 + 10nk) . . . )).

We iterated while ni was positive, so when we stopped, nk > 0, and nk+1 ≤ 0. We have already shown
that the quotient q ≥ 0 when a > 0, so nk+1 ≥ 0. This forces nk+1 = 0, so nk = 10(0) + ak = ak, where
0 < ak < 10. Thus, we distribute terms to obtain

n = a0 + 10a1 + 102a2 + · · ·+ 10kak,

as desired. Note that this also establishes the uniqueness of this representation, since any representation
in base 10 demands n = a0+10(a1+10a2+102a3+ · · ·+10k−1ak), where 0 ≤ a0 < 10. Euclid’s Division
Algorithm guarantees the uniqueness of a0 as well as the quotient n1 = a1 +10a2 + · · ·+10k−1ak, upon
which we recursively repeat the same argument.

Exercise 2 Let A,B ⊂ Q be two non-empty subsets such that every rational number is either in A or
in B, and if a ∈ A and b ∈ B, then a < b. Prove that there is a unique real number α such that every
rational number less than α is in A and every rational number greater than α is in B.

Solution Note that A and B are subsets of R. Since B is non-empty, we choose some b ∈ B which is
an upper bound for A since a < b for all a ∈ A. Thus, A has a supremum. We claim that α = supA
satisfies the desired properties, i.e. if x < α < y for some x, y ∈ Q, then x ∈ A and y ∈ B.

Let x < α for x ∈ Q. This must be in exactly one of A and B. If it were in B, then for any a ∈ A, we
have a < x. Thus, x is an upper bound of A. On the other hand, α is the least upper bound, so we must
have α ≤ x, which is a contradiction. Thus, x ∈ A.

1



Let α < y for y ∈ Q. Again, this must be in exactly one of A and B. If it were in A, that would force
y ≤ α since α is an upper bound, which is a contradiction. Thus, y ∈ B.

It remains to show that α is unique. Suppose β ∈ R also satisfies the desired properties. If β < α, then
we find a rational number p such that β < p < α using the density of the rationals in the reals. This is a
contradiction, since p < α implies that p ∈ A, but β < p implies that p ∈ B. Similarly, if β > α, we find
a rational number q such that β > q > α, which is a contradiction again, since β > q implies that q ∈ A
but q > α implies that q ∈ B. Thus, the only possibility is α = β. Hence, the real number satisfying the
desired properties is unique.

Exercise 3 Let x be a positive real number and let

Sx = {x, x1/2, x1/3, . . . , x1/n, . . . }.

Show that inf Sx = 1 if x ≥ 1 and supSx = 1 if x ≤ 1.

Solution Note that Sx ⊂ R. First, we take the case that x > 1. Note that x1/n > 1 because(x1/n) . . . (x1/n)︸ ︷︷ ︸
n times

n

= (x1/n)n . . . (x1/n)n︸ ︷︷ ︸
n times

= xn

by commutativity of multiplication. From the uniqueness of positive nth roots, we have

(x1/n) . . . (x1/n)︸ ︷︷ ︸
n times

= x > 1,

which is only possible if x1/n > 1. This means that Sx is bounded below, and thus has an infimum. We
now show that inf Sx = 1, i.e. given any ε > 0, we must find some s ∈ Sx such that 1 < s < 1 + ε. By
the Archimedean property, we find n ∈ N such that nε > x, and we claim that 1 < x1/n < 1 + ε. To
prove this, set x1/n = 1 + h, where h > 0. Using the binomial theorem,

x = (x1/n)n = (1 + h)n = 1 + nh+
1

2
n(n− 1)h2 + · · · > 1 + nh > nh.

Thus, h < x/n < ε, so 1 < x1/n < 1 + x/n < 1 + ε as desired.

If x < 1, note that 1/x > 1, so inf S1/x = 1. By a similar argument as before, we have x1/n < 1
for all n ∈ N, so Sx is bounded above and has a supremum. Also, note that S1/x = {1/s : s ∈ Sx}
because 1/x1/n = (1/x)1/n. Using the property proved in Assignment I, Exercise 5, we must have
(supSx) · (inf S1/x) = 1, thus supSx = 1.

In the special case that x = 1, note that the positive nth root of 1 are all 1 as 1n = 1 for all n ∈ N. Thus,
S1 = {1}, whose supremum and infimum are both trivially 1.

Exercise 4

(a) For α, β ∈ Q with α < β and for x ∈ R>1, show that xα < xβ .

Solution Let α = m/q and β = n/q, for integers m,n, q, where q > 0 is chosen as a common
denominator. Note that we must have m < n. Also note that for any y > 1, we must have y1/q > 1,
because

(y1/p)p = (y1/q) . . . (y1/q)︸ ︷︷ ︸
q times

= y > 1.

Note that by definition, y1/p is the unique positive real r such that rp = y. Now, since n−m > 0,
we have

xn−m = (x) . . . (x)︸ ︷︷ ︸
n−m times

> 1.
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Hence, x(n−m)/q > 1. Now, using the definition xa/b = (xa)1/b, we have

x(n−m)/q = (xn−m)1/q = (xnx−m)1/q = xn/qx−m/q = xβx−α > 1.

Since, x−α = 1/xα, we multiply xα on both sides, obtaining xβ > xα, as desired.

(b) For a, b ∈ R with a > 0, let
ab := sup{at : t ∈ Q, t < b}.

For x, y ∈ R with x > 1 and y > 0, let

logx y := sup{s : s ∈ Q, xs < y}.

Show that
xlogx y = y.

Solution Let x, y ∈ R be fixed. We must show that supS = y, where

S = {xt : t ∈ Q, t < sup{s : s ∈ Q, xs < y}}.

Also set
T = {s : s ∈ Q, xs < y}.

Pick an arbitrary element from S, say xt for some t ∈ Q. Note that t < supT , so there exists an
element of T , say some s ∈ Q, such that t < s ≤ supT . Thus, from our previous exercise, we have
xt < xs. Also, since s ∈ T , we have xs < y. Thus, xt < y for all elements xt ∈ S, so y is indeed
an upper bound of S. This means that S has a supremum supS ≤ y. Note that since x > 1, any
xt > 0, so supS > 0.

Suppose that 0 < supS = y′ < y. Then, 1 < y/y′, so from Exercise 3, we find n ∈ N such that

1 < x1/n <
y

y′
,

i.e. x1/ny′ < y. Now, we pick t ∈ Q such that

supT − 1

n
< t ≤ supT.

Note that this means that t ∈ T , and that supT < t+ 1/n /∈ T . Thus, xt ∈ S, so xt ≤ supS = y′.
Thus, xt+1/n ≤ x1/ny′ < y. However, this means that t+1/n ∈ T , which is a contradiction. Thus,
there exist no such y′, so supS ≥ y ≥ supS, proving that supS = y.
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