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Exercise 1 Show that for every real number r, there exists an integer such that n <r <n + 1.

Solution Supoose that there is no n € Z such that n < r < n + 1 for some r € R. Note that the
integers are unbounded below, so there exists some m € Z such that m < r. By our assumption, we
cannot have r < m + 1, so instead m 4+ 1 < r. Let this be our base case.

Now, let k € Z be such that m < k < r. Again, r < k+ 1 would contradict our assumption, so k+1 < r.
Thus, we have shown by induction that all integers n > m are bounded above by r. Additionally, the
other integers n’ < m < r anyways. Thus, n < r for all n € Z, which is absurd since the integers are
unbounded above. This proves the given statement.

Exercise 2 Show that between any two rational numbers, there exists an irrational number.

Solution Without loss of generality, let p,q € Q such that p > ¢. Note that 2 > /2 > 1, so
0<1/vV2<1land0< (p—q)/V2<p—q. Adding q to both sides,

g<qg+ 24

V2
Note that the irrationality of ¢ + (p — q)/v/2 follows directly from the irrationality of v/2.

Exercise 3 Show that in a group, every element has a unique inverse.

Solution Let (G, *) be a group with identity e € G, and let a € G be arbitrary. Clearly, a must have
an inverse in G. Suppose a’,a” € G are two such inverses. Thus,

ad*xa=e=axa, and a"xa=e=axd’.
Now, we evaluate
a = adxe (Identity)
= a' x(axd") (Composition with inverse)
= (a' xa)*ad" (Associativity)
= exa’ (Composition with inverse)
= a”’ (Identity)

Thus, a’ = a” for all inverses of a. In other words, the inverse of a is unique.
Exercise 4 Let T C R be bounded and let S = {|x — y| : x,y € T'}. Show that supS =supT — inf T.

Solution We assume that 7" is non-empty. Note that T is a bounded subset of R, so sup7 and
inf T' exist by the completeness of R. Without loss of generality, let «,y € T such that x > y. Then,
|z —y| < —y <supT —inf T, since z < supT and y > inf 7. Hence, S is a subset of R bounded
above, so sup S exists. We claim that sup.S = supT — inf T. Thus, for any € > 0, we must find s € S
such that supT —infT —e < s <supT —infT.

Now, from the properties of the supremum and infinum, we choose z’,y’ € T such that supT — €¢/2 <
' <supT and infT < ¢y < infT + ¢/2. Thus, 2’ — 3y’ > supT — inf T — e. Thus, without loss of
generality?, we have s = |2/ — /| € S and supT — inf T — € < s < supT — inf T. Thus, supT — inf T is
indeed the least upper bound of S, and is thus equal to its supremum.

IThe analogous case with = < y shows that |t —y| = —z +y < —inf T 4+ sup 7.
2If y/ > 2/, we can simply swap the roles of 2/ and ¢/, since supT — ¢/2 < ' < 3y’ < supT and infT < 2/ < 3/ <
infT +¢/2.



Exercise 5 Find the supremum and infimum of the set S = {m/(m +n) : m,n € N}.

Solution We claim that inf S = 0 and sup S = 1. First, note that

< —=1
m-4+n m

0 <

)

for all m,n € N. Thus, S is bounded, so its supremum and infimum exist by the completeness of R.
Also, we must have sup S < 1 and inf S > 0. We must now show that for any upper bound 1 > o« € R
and for any lower bound 0 < 8 € R of S, there exist x,y € S such that

0<z< B, and o<y <l

Clearly, 1/2=1/(1+1)e S,s0o §<1/2<1land a >1/2> 0.

On the other hand, the rationals Q are dense in the reals, so between any two real numbers, there exists
a rational number p/q for p,q € Z, ¢ # 0. Thus, we find rationals 0 < a/b< < land 0 < a < ¢/d < 1,
so0<a<band 0 <c<dfora,b,c,d e N. Thus, 0 <b—a € Nand 0 <d—céeN. We thus set

a C

xzies, yzméS,

completing the proof.



