MA 2101 : Analysis I

Satvik Saha, 19MS154, Group C

August 30, 2020

Exercise 1 Show that for every real number r, there exists an integer such that $n \le r < n + 1$.

Solution Suppose that there is no $n \in \mathbb{Z}$ such that $n \leq r < n+1$ for some $r \in \mathbb{R}$. Note that the integers are unbounded below, so there exists some $m \in \mathbb{Z}$ such that $m \leq r$. By our assumption, we cannot have r < m+1, so instead $m+1 \leq r$. Let this be our base case.

Now, let $k \in \mathbb{Z}$ be such that $m \leq k \leq r$. Again, r < k+1 would contradict our assumption, so $k+1 \leq r$. Thus, we have shown by induction that all integers $n \geq m$ are bounded above by r. Additionally, the other integers n' < m < r anyways. Thus, $n \leq r$ for all $n \in \mathbb{Z}$, which is absurd since the integers are unbounded above. This proves the given statement.

Exercise 2 Show that between any two rational numbers, there exists an irrational number.

Solution Without loss of generality, let $p, q \in \mathbb{Q}$ such that p > q. Note that $2 > \sqrt{2} > 1$, so $0 < 1/\sqrt{2} < 1$ and $0 < (p-q)/\sqrt{2} < p-q$. Adding q to both sides,

$$q < q + \frac{p - q}{\sqrt{2}} < p.$$

Note that the irrationality of $q + (p-q)/\sqrt{2}$ follows directly from the irrationality of $\sqrt{2}$.

Exercise 3 Show that in a group, every element has a unique inverse.

Solution Let (G, *) be a group with identity $e \in G$, and let $a \in G$ be arbitrary. Clearly, a must have an inverse in G. Suppose $a', a'' \in G$ are two such inverses. Thus,

$$a' * a = e = a * a'$$
, and $a'' * a = e = a * a''$.

Now, we evaluate

a'	=	a' * e	(Identity)
	=	a' * (a * a'')	(Composition with inverse)
	=	(a'*a)*a''	(Associativity)
	=	e * a''	(Composition with inverse)
	=	$a^{\prime\prime}$	(Identity)

Thus, a' = a'' for all inverses of a. In other words, the inverse of a is unique.

Exercise 4 Let $T \subset \mathbb{R}$ be bounded and let $S = \{|x - y| : x, y \in T\}$. Show that $\sup S = \sup T - \inf T$.

Solution We assume that T is non-empty. Note that T is a bounded subset of \mathbb{R} , so $\sup T$ and $\inf T$ exist by the completeness of \mathbb{R} . Without loss of generality, let $x, y \in T$ such that $x \ge y$. Then, $|x - y| \le x - y \le \sup T - \inf T$, since $x \le \sup T$ and $y \ge \inf T^1$. Hence, S is a subset of \mathbb{R} bounded above, so $\sup S$ exists. We claim that $\sup S = \sup T - \inf T$. Thus, for any $\epsilon > 0$, we must find $s \in S$ such that $\sup T - \inf T - \epsilon < s \le \sup T - \inf T$.

Now, from the properties of the supremum and infinum, we choose $x', y' \in T$ such that $\sup T - \epsilon/2 < x' \leq \sup T$ and $\inf T \leq y' < \inf T + \epsilon/2$. Thus, $x' - y' > \sup T - \inf T - \epsilon$. Thus, without loss of generality², we have $s = |x' - y'| \in S$ and $\sup T - \inf T - \epsilon < s \leq \sup T - \inf T$. Thus, $\sup T - \inf T$ is indeed the least upper bound of S, and is thus equal to its supremum.

¹The analogous case with x < y shows that $|x - y| = -x + y \le -\inf T + \sup T$.

²If y' > x', we can simply swap the roles of x' and y', since $\sup T - \epsilon/2 < x' < y' \le \sup T$ and $\inf T \le x' < y' < \inf T + \epsilon/2$.

Exercise 5 Find the supremum and infimum of the set $S = \{m/(m+n) : m, n \in \mathbb{N}\}.$

Solution We claim that $\inf S = 0$ and $\sup S = 1$. First, note that

$$0 < \frac{m}{m+n} < \frac{m}{m} = 1,$$

for all $m, n \in \mathbb{N}$. Thus, S is bounded, so its supremum and infimum exist by the completeness of \mathbb{R} . Also, we must have $\sup S \leq 1$ and $\inf S \geq 0$. We must now show that for any upper bound $1 > \alpha \in \mathbb{R}$ and for any lower bound $0 < \beta \in \mathbb{R}$ of S, there exist $x, y \in S$ such that

$$0 < x < \beta$$
, and $\alpha < y < 1$.

Clearly, $1/2 = 1/(1+1) \in S$, so $\beta < 1/2 < 1$ and $\alpha > 1/2 > 0$.

On the other hand, the rationals \mathbb{Q} are dense in the reals, so between any two real numbers, there exists a rational number p/q for $p, q \in \mathbb{Z}$, $q \neq 0$. Thus, we find rationals $0 < a/b < \beta < 1$ and $0 < \alpha < c/d < 1$, so 0 < a < b and 0 < c < d for $a, b, c, d \in \mathbb{N}$. Thus, $0 < b - a \in \mathbb{N}$ and $0 < d - c \in \mathbb{N}$. We thus set

$$x = \frac{a}{a + (b - a)} \in S, \qquad y = \frac{c}{c + (d - c)} \in S,$$

completing the proof.