MA 2101 : Analysis I

Satvik Saha, 19MS154, Group C α and α

Exercise 1 Show that for every real number r, there exists an integer such that $n \leq r < n+1$.

Solution Supoose that there is no $n \in \mathbb{Z}$ such that $n \leq r < n+1$ for some $r \in \mathbb{R}$. Note that the integers are unbounded below, so there exists some $m \in \mathbb{Z}$ such that $m \leq r$. By our assumption, we cannot have $r < m + 1$, so instead $m + 1 \leq r$. Let this be our base case.

Now, let $k \in \mathbb{Z}$ be such that $m \leq k \leq r$. Again, $r < k+1$ would contradict our assumption, so $k+1 \leq r$. Thus, we have shown by induction that all integers $n \geq m$ are bounded above by r. Additionally, the other integers $n' < m < r$ anyways. Thus, $n \leq r$ for all $n \in \mathbb{Z}$, which is absurd since the integers are unbounded above. This proves the given statement.

Exercise 2 Show that between any two rational numbers, there exists an irrational number.

Solution Without loss of generality, let $p, q \in \mathbb{Q}$ such that $p > q$. Note that $2 > \sqrt{q}$ **Solution** Without loss of generality, let $p, q \in \mathbb{Q}$ such that $p > q$. Note that $2 > \sqrt{2} > 1$, so $0 < 1/\sqrt{2} < 1$ and $0 < (p - q)/\sqrt{2} < p - q$. Adding q to both sides,

$$
q < q + \frac{p - q}{\sqrt{2}} < p.
$$

Note that the irrationality of $q + (p - q)$ $\sqrt{2}$ follows directly from the irrationality of $\sqrt{2}$.

Exercise 3 Show that in a group, every element has a unique inverse.

Solution Let $(G, *)$ be a group with identity $e \in G$, and let $a \in G$ be arbitrary. Clearly, a must have an inverse in G. Suppose $a', a'' \in G$ are two such inverses. Thus,

$$
a' * a = e = a * a'
$$
, and $a'' * a = e = a * a''$.

Now, we evaluate

Thus, $a' = a''$ for all inverses of a. In other words, the inverse of a is unique.

Exercise 4 Let $T \subset \mathbb{R}$ be bounded and let $S = \{|x - y| : x, y \in T\}$. Show that $\sup S = \sup T - \inf T$.

Solution We assume that T is non-empty. Note that T is a bounded subset of \mathbb{R} , so sup T and inf T exist by the completeness of R. Without loss of generality, let $x, y \in T$ such that $x \geq y$. Then, $|x-y| \leq x - y \leq \sup T - \inf T$, since $x \leq \sup T$ and $y \geq \inf T^1$. Hence, S is a subset of R bounded above, so sup S exists. We claim that $\sup S = \sup T - \inf T$. Thus, for any $\epsilon > 0$, we must find $s \in S$ such that $\sup T - \inf T - \epsilon < s \leq \sup T - \inf T$.

Now, from the properties of the supremum and infinum, we choose $x', y' \in T$ such that sup $T - \epsilon/2$ $x' \le \sup T$ and $\inf T \le y' < \inf T + \epsilon/2$. Thus, $x' - y' > \sup T - \inf T - \epsilon$. Thus, without loss of generality², we have $s = |x' - y'| \in S$ and $\sup T - \inf T - \epsilon < s \leq \sup T - \inf T$. Thus, $\sup T - \inf T$ is indeed the least upper bound of S, and is thus equal to its supremum.

¹The analogous case with $x < y$ shows that $|x - y| = -x + y \le -\inf T + \sup T$.
²If $y' > x'$, we can simply swap the roles of x' and y', since $\sup T - \epsilon/2 < x' < y' \le \sup T$ and $\inf T \le x' < y' <$ inf $T + \epsilon/2$.

Exercise 5 Find the supremum and infimum of the set $S = \{m/(m+n) : m, n \in \mathbb{N}\}.$

Solution We claim that inf $S = 0$ and sup $S = 1$. First, note that

$$
0 \ < \ \frac{m}{m+n} \ < \ \frac{m}{m} = 1,
$$

for all $m, n \in \mathbb{N}$. Thus, S is bounded, so its supremum and infimum exist by the completeness of \mathbb{R} . Also, we must have sup $S \leq 1$ and inf $S \geq 0$. We must now show that for any upper bound $1 > \alpha \in \mathbb{R}$ and for any lower bound $0 < \beta \in \mathbb{R}$ of S, there exist $x, y \in S$ such that

$$
0 < x < \beta, \quad \text{and} \quad \alpha < y < 1.
$$

Clearly, $1/2 = 1/(1+1) \in S$, so $\beta < 1/2 < 1$ and $\alpha > 1/2 > 0$.

On the other hand, the rationals Q are dense in the reals, so between any two real numbers, there exists a rational number p/q for $p, q \in \mathbb{Z}$, $q \neq 0$. Thus, we find rationals $0 < a/b < \beta < 1$ and $0 < \alpha < c/d < 1$, so $0 < a < b$ and $0 < c < d$ for $a, b, c, d \in \mathbb{N}$. Thus, $0 < b - a \in \mathbb{N}$ and $0 < d - c \in \mathbb{N}$. We thus set

$$
x = \frac{a}{a + (b - a)} \in S, \qquad y = \frac{c}{c + (d - c)} \in S,
$$

completing the proof.