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Exercise 1 Show that for every real number r, there exists an integer such that n ≤ r < n+ 1.

Solution Supoose that there is no n ∈ Z such that n ≤ r < n + 1 for some r ∈ R. Note that the
integers are unbounded below, so there exists some m ∈ Z such that m ≤ r. By our assumption, we
cannot have r < m+ 1, so instead m+ 1 ≤ r. Let this be our base case.
Now, let k ∈ Z be such that m ≤ k ≤ r. Again, r < k+1 would contradict our assumption, so k+1 ≤ r.
Thus, we have shown by induction that all integers n ≥ m are bounded above by r. Additionally, the
other integers n′ < m < r anyways. Thus, n ≤ r for all n ∈ Z, which is absurd since the integers are
unbounded above. This proves the given statement.

Exercise 2 Show that between any two rational numbers, there exists an irrational number.

Solution Without loss of generality, let p, q ∈ Q such that p > q. Note that 2 >
√
2 > 1, so

0 < 1/
√
2 < 1 and 0 < (p− q)/

√
2 < p− q. Adding q to both sides,

q < q +
p− q√

2
< p.

Note that the irrationality of q + (p− q)/
√
2 follows directly from the irrationality of

√
2.

Exercise 3 Show that in a group, every element has a unique inverse.

Solution Let (G, ∗) be a group with identity e ∈ G, and let a ∈ G be arbitrary. Clearly, a must have
an inverse in G. Suppose a′, a′′ ∈ G are two such inverses. Thus,

a′ ∗ a = e = a ∗ a′, and a′′ ∗ a = e = a ∗ a′′.

Now, we evaluate

a′ = a′ ∗ e (Identity)
= a′ ∗ (a ∗ a′′) (Composition with inverse)
= (a′ ∗ a) ∗ a′′ (Associativity)
= e ∗ a′′ (Composition with inverse)
= a′′ (Identity)

Thus, a′ = a′′ for all inverses of a. In other words, the inverse of a is unique.

Exercise 4 Let T ⊂ R be bounded and let S = {|x− y| : x, y ∈ T}. Show that supS = supT − inf T .

Solution We assume that T is non-empty. Note that T is a bounded subset of R, so supT and
inf T exist by the completeness of R. Without loss of generality, let x, y ∈ T such that x ≥ y. Then,
|x − y| ≤ x − y ≤ supT − inf T , since x ≤ supT and y ≥ inf T 1. Hence, S is a subset of R bounded
above, so supS exists. We claim that supS = supT − inf T . Thus, for any ε > 0, we must find s ∈ S
such that supT − inf T − ε < s ≤ supT − inf T .
Now, from the properties of the supremum and infinum, we choose x′, y′ ∈ T such that supT − ε/2 <
x′ ≤ supT and inf T ≤ y′ < inf T + ε/2. Thus, x′ − y′ > supT − inf T − ε. Thus, without loss of
generality2, we have s = |x′ − y′| ∈ S and supT − inf T − ε < s ≤ supT − inf T . Thus, supT − inf T is
indeed the least upper bound of S, and is thus equal to its supremum.

1The analogous case with x < y shows that |x− y| = −x+ y ≤ − inf T + supT .
2If y′ > x′, we can simply swap the roles of x′ and y′, since supT − ε/2 < x′ < y′ ≤ supT and inf T ≤ x′ < y′ <

inf T + ε/2.
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Exercise 5 Find the supremum and infimum of the set S = {m/(m+ n) : m,n ∈ N}.

Solution We claim that inf S = 0 and supS = 1. First, note that

0 <
m

m+ n
<

m

m
= 1,

for all m,n ∈ N. Thus, S is bounded, so its supremum and infimum exist by the completeness of R.
Also, we must have supS ≤ 1 and inf S ≥ 0. We must now show that for any upper bound 1 > α ∈ R
and for any lower bound 0 < β ∈ R of S, there exist x, y ∈ S such that

0 < x < β, and α < y < 1.

Clearly, 1/2 = 1/(1 + 1) ∈ S, so β < 1/2 < 1 and α > 1/2 > 0.
On the other hand, the rationals Q are dense in the reals, so between any two real numbers, there exists
a rational number p/q for p, q ∈ Z, q 6= 0. Thus, we find rationals 0 < a/b < β < 1 and 0 < α < c/d < 1,
so 0 < a < b and 0 < c < d for a, b, c, d ∈ N. Thus, 0 < b− a ∈ N and 0 < d− c ∈ N. We thus set

x =
a

a+ (b− a)
∈ S, y =

c

c+ (d− c)
∈ S,

completing the proof.
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