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Exercise 1 Show that v/2 + /3 is not rational.

Solution Assume to the contrary that /2 + v/3 is rational. We write v/2 + /3 = p/q for p,q € Z and
q #0. Then (v2 +V3)? =5+ 26 = p?/¢? is also rational, and so is v6 = (p? — 5¢%)/24¢>.

Let v/6 = a/b where a,b € Z, b # 0, and gcd(a,b) = 1. Squaring and rearranging, we have a?> = 6b°.
Since 6b2 is even, so is a?, and so is a (this follows since 2 is a prime). Thus, we write a = 2¢ for some
integer ¢, hence 4c?> = 60> = 2¢? = 3b%. Now, 2¢2 is even, so 3b> must be even as well. However, we
already know that a is even and shares no common factors with . Thus, b must be odd, and so is 3b2.
This is a contradiction. Thus, V6 cannot be rational, so V2 +3 ¢ Q.

Exercise 2 Let a be a real number such that a > 1 and let S = {a™ : n € N}. Show that the set S
has no upper bound.

Solution Since a > 1, we write a = 1 + z for some positive real z, then expand (1 + z)™ using the
binomial theorem to obtain the inequality

1
a” = 1+n:c+§n(n71)x+~~+:17” > nx.

Now, suppose that S is bounded above by some real number 3. Clearly, 8 > 1 since a™ > 1. This
would imply that 8 > a™ > nx for all n € N. Thus, n < 8/z for all n € N, which is absurd, since N is
unbounded in R. Thus, S has no upper bound in the reals.

Exercise 3 Show that N, the set of natural numbers, has the LUB property.

Solution Let () # E C N. be bounded above. The Well-Ordering Principle tells us that E is bounded
below as well, so the set E is finite. We show that E has a supremum, and that it is contained within F,
by induction on the cardinality of E. As a base case, suppose E has exactly one element, so E = {z¢}.
We claim that sup E exists and that sup F = x¢g = max E. This is clearly true since x < x( for all x € E,
and if y € N is an upper bound of F, x < y for all z € E, so ¢ < y in particular. Hence, z¢ is the
maximum of the singleton E.

We now assume that max E exists for all finite subsets of N bound above containing exactly k& elements.
Let ) # D C N containing exactly k + 1 elements be arbitrary. We choose and fix an arbitrary d € D,
then set D' = D\ {d}. Clearly, D’ contains exactly k elements, so d’ = max D’ exists.

Now, if d > d’, then d > d’ > 2’ for all z’ € D', so d > x for all x € D. Also, if y € N is an upper bound
of D, then x <y for all x € D, so d < y in particular. Thus, d = sup D = max D.

Otherwise, if d < d’, then d’ > z for all x € D. Again, if y € N is an upper bound of D, then z < y for
all x € D, so d <y in particular. Thus, d = sup D = max D. Hence, every subset of N containing & + 1
elements and bound above has a maximum.

Therefore, by induction on k, all non-empty subsets of N bound above have a supremum. Thus, the set
N has the LUB property.

Exercise 4 We know that if we input any positive natural number in a calculator and keep on pressing
the square root button, finally we get 1. Show that if you do this experiment on an n-digit calculator,
then starting with some positive number, the number of times you need to press the square root button
to reach 1 is at most

1
1+ {logz(n +1) —log, logy, (1 + W)J :



Solution NOTE: We assume that the calculator displays the first truncated n digits of the true
value. We do not take into account rounding errors introduced between steps. On the other hand, such
errors can only truncate/round down the intermediate numbers, so our result still serves as an upper
bound on the required number of steps.

Let the number initially entered be x > 1. After m presses of the square root button, we obtain the
number z'/2". Now, our calculator displays only n digits, so the number

1.000...0abc...
—_—

n digits

is displayed as simply 1.000...0 when truncated. Note that this number is at most 1+ 1/10""1 := L.
Suppose our calculator finally displays 1.000...0, whereas the true answer is some y < L. Now, the
calculator must have displayed some number not equal to 1 on the previous step, so y> > L. We
now traceback the process of taking square roots by squaring y m times, to obtain the initial number

y?" > L?"/2. Now, since our calculator only holds n digits, this initial number can be at most

999...9,
—_——
n digits

which is simply 10" — 1. Thus, we demand y?" < 10" — 1, or

2"/2 < 10m
2™ og,y L < m,
m —1 + logylog,o L < logyn,
m—1 < logyn — log,log;, L,
m—1 < 1+ |logyn — log,logyy L],
m < 1+ [logyn —logylogyg L],

as desired. Here, have used the inequalities x < 1+ [z] forz € R,and p—1< ¢ = p < qfor p,q € Z.

Note that under our assumptions, if we start with 2 < 1, the result z'/2" will always be of the form
0.abc. .., which when truncated is never of the form equal to 1.000....
If, however, we allow the number
0.999...95abc. ..
—_—
n digits

to be rounded up to 1, then we proceed with a similar argument as above. Note that this number is at
least 1 —1/10""1 +5/10" = 1 —5/10" := M. Our final result must be some w > M, such that w? < M.
Our initial value w?” must have been at least

0.000...1,
———

n digits

which is simply 1/10"~!. Thus, we demand w?" > 10~"*!, or

M2"/2 > gt
2" ogig M > —n+1,
2" Mog,o(1/M) < n—1<n,
m — 1 + logy logyo(1/M) < logyn,
m—1 < logyn — log,log,,(1/M),
m < 1+ [logyn —logylog(1/M)] .

Note that for all 0 < € < 1/2, we have 1 < 1/(1 —€) < 1+ 2e. This is equivalent to (1 —€)(1 + 2¢) =
1+e—2e2=1+¢€(1l—2€) > 1, which is clearly true since ¢ < 1/2. Thus, 1 < 1/M =1/(1 —5/10") <
1+2-5/10" =1+ 1/10""1 = L, so log;(1/M) < log; L. Thus, the bound on m we obtain for x < 1 is
weaker than the one for x > 1. Hence, our first result holds.



Exercise 5 Let S be a non-empty subset of the reals such that each element of S is greater than or
equal to 1, and let T'= {1/s: s € S}. Then show that

(a) supT <infS.
(b) (supT) - (inf S) = 1.

Solution Note that s > 1,s01/s <1 for all s € S. Thus, S and T are non-empty subsets of R, where
S is bound below by 1 and T is bound above by 1, so sup7T and inf S exist in R.

(a) First, note that inf S > 1. This is true because 1 is a lower bound of S, so by definition, inf S > I
for all lower bounds [ of S. Similarly, we also conclude that sup7” < 1, since 1 is an upper bound
of T so supT < u for all upper bounds u of T'. Putting these together, supT <1 <inf S.

(b) First, note that inf .S < s for all s € S, s0 1/inf S > 1/s for all s € S. Now, for each t € T, there
exists ' € S such that ¢t = 1/s’, therefore 1/inf S > ¢ for all ¢ € T. In other words, 1/inf S is
an upper bound of T, so 1/inf S > sup T, since supT is the least upper bound. Similarly, note
that supT >t for all t € T, so 1/supT < 1/t for all t € S. Again, for each s € S, there exists
t' in T such that s = 1/¢/, so 1/supT < s for all s € S. Thus, S is bound below by 1/supT, so
1/supT <inf S.

These two inequalities read supT - inf S < 1 < supT -inf S. Thus, by trichotomy, we must have
supT -inf S =1 as desired.



