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Exercise 1 Show that
√
2 +

√
3 is not rational.

Solution Assume to the contrary that
√
2 +

√
3 is rational. We write

√
2 +

√
3 = p/q for p, q ∈ Z and

q 6= 0. Then (
√
2 +

√
3)2 = 5 + 2

√
6 = p2/q2 is also rational, and so is

√
6 = (p2 − 5q2)/2q2.

Let
√
6 = a/b where a, b ∈ Z, b 6= 0, and gcd(a, b) = 1. Squaring and rearranging, we have a2 = 6b2.

Since 6b2 is even, so is a2, and so is a (this follows since 2 is a prime). Thus, we write a = 2c for some
integer c, hence 4c2 = 6b2 =⇒ 2c2 = 3b2. Now, 2c2 is even, so 3b2 must be even as well. However, we
already know that a is even and shares no common factors with b. Thus, b must be odd, and so is 3b2.
This is a contradiction. Thus,

√
6 cannot be rational, so

√
2 +

√
3 /∈ Q.

Exercise 2 Let a be a real number such that a > 1 and let S = {an : n ∈ N}. Show that the set S
has no upper bound.

Solution Since a > 1, we write a = 1 + x for some positive real x, then expand (1 + x)n using the
binomial theorem to obtain the inequality

an = 1 + nx+
1

2
n(n− 1)x+ · · ·+ xn > nx.

Now, suppose that S is bounded above by some real number β. Clearly, β > 1 since an > 1. This
would imply that β > an > nx for all n ∈ N. Thus, n < β/x for all n ∈ N, which is absurd, since N is
unbounded in R. Thus, S has no upper bound in the reals.

Exercise 3 Show that N, the set of natural numbers, has the LUB property.

Solution Let ∅ 6= E ⊆ N. be bounded above. The Well-Ordering Principle tells us that E is bounded
below as well, so the set E is finite. We show that E has a supremum, and that it is contained within E,
by induction on the cardinality of E. As a base case, suppose E has exactly one element, so E = {x0}.
We claim that supE exists and that supE = x0 = maxE. This is clearly true since x ≤ x0 for all x ∈ E,
and if y ∈ N is an upper bound of E, x ≤ y for all x ∈ E, so x0 ≤ y in particular. Hence, x0 is the
maximum of the singleton E.

We now assume that maxE exists for all finite subsets of N bound above containing exactly k elements.
Let ∅ 6= D ⊆ N containing exactly k + 1 elements be arbitrary. We choose and fix an arbitrary d ∈ D,
then set D′ = D \ {d}. Clearly, D′ contains exactly k elements, so d′ = maxD′ exists.
Now, if d > d′, then d > d′ ≥ x′ for all x′ ∈ D′, so d ≥ x for all x ∈ D. Also, if y ∈ N is an upper bound
of D, then x ≤ y for all x ∈ D, so d ≤ y in particular. Thus, d = supD = maxD.
Otherwise, if d ≤ d′, then d′ ≥ x for all x ∈ D. Again, if y ∈ N is an upper bound of D, then x ≤ y for
all x ∈ D, so d′ ≤ y in particular. Thus, d′ = supD = maxD. Hence, every subset of N containing k+1
elements and bound above has a maximum.

Therefore, by induction on k, all non-empty subsets of N bound above have a supremum. Thus, the set
N has the LUB property.

Exercise 4 We know that if we input any positive natural number in a calculator and keep on pressing
the square root button, finally we get 1. Show that if you do this experiment on an n-digit calculator,
then starting with some positive number, the number of times you need to press the square root button
to reach 1 is at most

1 +

⌊
log2(n+ 1)− log2 log10

(
1 +

1

10n−1

)⌋
.
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Solution Note: We assume that the calculator displays the first truncated n digits of the true
value. We do not take into account rounding errors introduced between steps. On the other hand, such
errors can only truncate/round down the intermediate numbers, so our result still serves as an upper
bound on the required number of steps.

Let the number initially entered be x > 1. After m presses of the square root button, we obtain the
number x1/2m . Now, our calculator displays only n digits, so the number

1.000 . . . 0︸ ︷︷ ︸
n digits

abc . . .

is displayed as simply 1.000 . . . 0 when truncated. Note that this number is at most 1 + 1/10n−1 := L.
Suppose our calculator finally displays 1.000 . . . 0, whereas the true answer is some y < L. Now, the
calculator must have displayed some number not equal to 1 on the previous step, so y2 ≥ L. We
now traceback the process of taking square roots by squaring y m times, to obtain the initial number
y2

m ≥ L2m/2. Now, since our calculator only holds n digits, this initial number can be at most

999 . . . 9︸ ︷︷ ︸
n digits

,

which is simply 10n − 1. Thus, we demand y2
m ≤ 10n − 1, or

L2m/2 < 10n

2m−1 log10 L < n,

m− 1 + log2 log10 L < log2 n,

m− 1 < log2 n− log2 log10 L,

m− 1 < 1 + blog2 n− log2 log10 Lc ,
m ≤ 1 + blog2 n− log2 log10 Lc ,

as desired. Here, have used the inequalities x < 1+ bxc for x ∈ R, and p− 1 < q =⇒ p ≤ q for p, q ∈ Z.

Note that under our assumptions, if we start with x < 1, the result x1/2m will always be of the form
0.abc . . . , which when truncated is never of the form equal to 1.000 . . . .
If, however, we allow the number

0.999 . . . 9︸ ︷︷ ︸
n digits

5abc . . .

to be rounded up to 1, then we proceed with a similar argument as above. Note that this number is at
least 1− 1/10n−1 +5/10n = 1− 5/10n := M . Our final result must be some w > M , such that w2 ≤ M .
Our initial value w2m must have been at least

0.000 . . . 1︸ ︷︷ ︸
n digits

,

which is simply 1/10n−1. Thus, we demand w2m ≥ 10−n+1, or

M2m/2 ≥ 10−n+1

2m−1 log10 M ≥ −n+ 1,

2m−1 log10(1/M) ≤ n− 1 < n,

m− 1 + log2 log10(1/M) < log2 n,

m− 1 < log2 n− log2 log10(1/M),

m ≤ 1 + blog2 n− log2 log10(1/M)c .

Note that for all 0 < ε < 1/2, we have 1 < 1/(1 − ε) < 1 + 2ε. This is equivalent to (1 − ε)(1 + 2ε) =
1 + ε − 2ε2 = 1 + ε(1− 2ε) > 1, which is clearly true since ε < 1/2. Thus, 1 < 1/M = 1/(1− 5/10n) <
1+ 2 · 5/10n = 1+ 1/10n−1 = L, so log10(1/M) < log10 L. Thus, the bound on m we obtain for x < 1 is
weaker than the one for x > 1. Hence, our first result holds.
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Exercise 5 Let S be a non-empty subset of the reals such that each element of S is greater than or
equal to 1, and let T = {1/s : s ∈ S}. Then show that

(a) supT ≤ inf S.

(b) (supT ) · (inf S) = 1.

Solution Note that s ≥ 1, so 1/s ≤ 1 for all s ∈ S. Thus, S and T are non-empty subsets of R, where
S is bound below by 1 and T is bound above by 1, so supT and inf S exist in R.

(a) First, note that inf S ≥ 1. This is true because 1 is a lower bound of S, so by definition, inf S ≥ l
for all lower bounds l of S. Similarly, we also conclude that supT ≤ 1, since 1 is an upper bound
of T so supT ≤ u for all upper bounds u of T . Putting these together, supT ≤ 1 ≤ inf S.

(b) First, note that inf S ≤ s for all s ∈ S, so 1/ inf S ≥ 1/s for all s ∈ S. Now, for each t ∈ T , there
exists s′ ∈ S such that t = 1/s′, therefore 1/ inf S ≥ t for all t ∈ T . In other words, 1/ inf S is
an upper bound of T , so 1/ inf S ≥ supT , since supT is the least upper bound. Similarly, note
that supT ≥ t for all t ∈ T , so 1/ supT ≤ 1/t for all t ∈ S. Again, for each s ∈ S, there exists
t′ in T such that s = 1/t′, so 1/ supT ≤ s for all s ∈ S. Thus, S is bound below by 1/ supT , so
1/ supT ≤ inf S.
These two inequalities read supT · inf S ≤ 1 ≤ supT · inf S. Thus, by trichotomy, we must have
supT · inf S = 1 as desired.
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