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Problem 1A. Solve the following second order differential equation by the method of undetermined
coefficients.

y′′(x) − 7y′(x) + 12y = 8 sinx + exp 3x.

Solution 1A. We first solve the homogenous differential equation for the complementary solution yC(x).

y′′(x) − 7y′(x) + 12y = 0.

This is a second order ODE with constant coefficients. Its characteristic polynomial is

f(t) = t2 − 7t + 12 = (t− 3)(t− 4).

The roots of f are clearly 3 and 4. We thus set

yC(x) = A exp 3x + B exp 4x.

We verify that {e3x, e4x} indeed comprise a fundamental set of (linearly independent) solutions of the
homogenous ODE by calculating the Wronskian

W
(
e3x, e4x

)
(x) =

∣∣∣∣ e3x e4x

3e3x 4e4x

∣∣∣∣ = e7x,

which is clearly non-zero over the reals.
To solve for the particular solution yP (x), using the method of undetermined coefficients, we set

yP (x) = C sinx + D cosx + Ex exp 3x.

We choose a guess of xe3x to account for the fact that e3x is part of the complementary solution. Oth-
erwise, the e3x term would vanish on the LHS, but not on the RHS.

Plugging this into the original ODE, we obtain

(−C + 7D + 12C) sinx + (−D − 7C + 12D) cosx + E(9x+ 6− 21x− 7 + 12x) exp 3x

= (11C + 7D) sinx+ (−7C + 11D) cosx− E exp 3x

Comparing coefficients,

11C + 7D = 8

−7C + 11D = 0

E = −1,

which yields C = 44/85 and D = 28/85.
Hence, the solution to the ODE is given by y(x) = yC(x) + yP (x), i.e.

y(x) = Ae3x + Be4x +
44

85
sinx +

28

85
cosx − xe3x. (?)
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Problem 1B. Solve the same differential equation by the method of variation of parameters.
Solution 1B. We have already solved the homogeneous ODE for the complementary solution yC(x).
We set yP (x) = u(x)e3x+v(x)e4x = uy1+vy2. We also stipulate that u′y1+v′y2 = 0, i.e. u′ = −v′ex.
Hence, y′P (x) = uy′1 + vy′2, and y′′P (x) = u′y′1 + uy′′1 + v′y′2 + vy′′2 .
Plugging this into the original differential equation, and acknowledging that y1, y2 are solutions of the
homogenous ODE gives

u′y′1 + v′y′2 = 8 sinx+ e3x = g(x).

Together with u′y1 + v′y2 = 0, we obtain

u′(x) = − y2g(x)

y1y′2 − y′1y2
= − y2g(x)

W (y1, y2)
.

Solving this for u yields

u(x) = −
∫

e4x(8 sinx+ e3x)e−7x dx = −
∫

8 sinx e−3x + 1 dx

To calculate the trigonometric integral, we set

I =

∫
cos bx eax dx + i

∫
sin bx eax dx

=

∫
eibxeax dx

=
1

a+ ib
eaxeibx

=
a− ib

a2 + b2
(cos bx+ i sin bx)eax

=
1

a2 + b2
(a cosx+ b sinx)eax +

1

a2 + b2
(−b cosx+ a sinx)ieax.

Equating real and imaginary parts gives us the desired result. We ignore constants of integration as the
resulting terms will be absorbed back into the complementary solution.
Hence,

u(x) = −x + 8 · 1

10
cosx e−3x + 8 · 3

10
sinx e−3x

Similarly,
v′(x) = −u′(x)e−x = e4x(8 sinx+ e3x)e−7xe−x.

v(x) =

∫
8 sinx e−4x + e−x dx

= −e−x − 8 · 1

17
cosx e−4x − 8 · 4

17
sinx e−4x.

Hence,

yP (x) = −xe3x + 8 · 1

10
cosx+ 8 · 3

10
sinx− e3x − 8 · 1

17
cosx− 8 · 4

17
sinx

= −e3x − xe3x +
28

85
cosx+

44

85
sinx.

Putting this together with the complementary solution, and absorbing the extra e3x term, we obtain the
same general solution as before,

y(x) = A′e3x + Be4x +
44

85
sinx +

28

85
cosx − xe3x. (?)
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Problem 2. Find the general solution of the equation of motion of a forced oscillator with damping,
described by the second order differential equation

ẍ + 2γẋ + ω2
0x =

F0

m
eiωt.

Show that the maximum amplitude of the steady state vibration is given by

xmax

∣∣∣
ω=ω0

=
F0

2mγω0
.

Solution 2. We first solve the homogeneous ODE for the complementary solution xC(t),

ẍ + 2γẋ + ω2
0 = 0.

The characteristic polynomial is given by

f(s) = s2 + 2γs + ω2
0 .

This has roots
s+/− = −γ ±

√
γ2 − ω2

0 .

Hence, for unequal roots, i.e. γ2 − ω2
0 6= 0, we have

xC(t) =

(
Ae

√
γ2−ω2

0t + Be
−
√

γ2−ω2
0t

)
e−γt.

For equal roots, i.e. γ2 − ω2
0 = 0, we have

xC(t) = (A + Bt) e−γt.

We consider 2 cases. We assume real coefficients, positive γ.

Case I. γ2 − ω2
0 6= 0.

We use the method of undetermined coefficients to construct a particular solution yP (t).

xP (t) = Ceiωt.

Plugging this into the original ODE yields

(−ω2 + 2iγω + ω2
0)Ceiωt =

F0

m
eiωt.

C =
F0

m((ω2
0 − ω2) + 2iγω)

.

Hence,

x(t) =

(
Ae

√
γ2−ω2

0t + Be
−
√

γ2−ω2
0t

)
e−γt +

F0

m((ω2
0 − ω2) + 2iγω)

eiωt.

Case II. γ2 − ω2
0 = 0.

The particular solution remains the same. Hence,

x(t) = (A+Bt)e−γt +
F0

m((ω2
0 − ω2) + 2iγω)

eiωt.

Note that for real valued coefficients, as t → ∞, xC(t) → 0. Hence, the steady state response is governed
by the particluar solution. Now,

Re xP (t) =
F0

m((ω2
0 − ω2)2 + 4γ2ω2)

(
(ω2

0 − ω2) cosωt+ 2γω sinωt
)
.

Setting

φ = arctan

(
2γω

ω2
0 − ω2

)
,
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we obtain
Re xP (t → ∞) ≈ F0

m
√
(ω2

0 − ω2)2 + 4γ2ω2
cos(ωt− φ).

Clearly, the amplitude of steady state oscillation is maximized when the denominator is minimized.
Setting ∂

∂ω ((ω
2
0 − ω)2 + 4γ2ω2) = 0, we have

−4(ω2
0 − ω2)ω + 8γ2ω = 0,

ω = ωR =
√

ω2
0 − 2γ2.

This is the resonant angular frequency of the system. Also, assuming real, positive ωR, i.e. a sufficiently
underdamped system,

∂2

∂ω2
((ω2

0 − ω2)2 + 4γ2ω2) = −4ω2
0 + 12ω2 + 8γ2,

∂2

∂ω2
((ω2

0 − ω2)2 + 4γ2ω2)
∣∣∣
ω=ωR

= 8ω2
0 − 16γ2 = 8ω2

R > 0.

Hence, the maximum amplitude at steady state is

xmax =
F0

2mγ
√
ω2
0 − γ2

.

For very weak damping, ωR → ω0, and thus

xmax ≈ F0

2mγω0
.
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