MA 1201 : Mathematics II

Satvik Saha, 19MS154 June 19, 2020

Section 2.5 (Distance Preserving Maps)

Problem 1. Construct a rotation $D_{x,\phi}$ which maps (1, 2) and (4, 6) respectively onto (5, 2) and (8, −2) respectively.

Solution 1. Let the points $P = (1, 2)$ and $Q = (4, 6)$ be mapped to $P' = (5, 2)$ and $Q' = (8, -2)$ respectively. Consider the vector $u = PQ = (3, 4)$ in \mathbb{R}^2 . Under the isometry $D_{x, \phi}$, this gets transformed into the vector $v = P'Q' = (3, -4)$. The angle by which u rotates into v must be precisely the angle ϕ . Thus, $\phi = -2 \arccos(3/5)$.

Let $x = (x_1, x_2)$ be the center of rotation. Thus, we must have equal distances $Px = P'x$ and $Qx = Q'x$. The first forces $x_1 = 3$. Thus, from the second condition, we must have $(4-3)^2 + (6-x_2)^2 =$ $(8-3)^2 + (-2-x_2)^2$, which rearranges to $(6-x_2)^2 - (-2-x_2)^2 = 24$. Using the difference of squares, $(4-2x_2)(8) = 24$, thus $x_2 = \frac{1}{2}$. Hence, $x = (3, \frac{1}{2})$.

Thus, the required isometry is $D_{(3,1/2),-2 \arccos(3/5)}$.

Problem 2.

- (i) Give the coordinate representation of $D_{(1,6),\pi/6}$.
- (ii) Give the coordinate representation of the reflection in the line $L_{1,2,-1}$.
- (iii) Find an x so that $D_{(3,2),\theta} = D_{\theta} \circ T_x$, where θ is such that $\cos \theta = 3/5$ and $\sin \theta = 4/5$.

Solution 2.

(i) Note that $D_{x,\phi} = T_x \circ D_{\phi} \circ T_{-x}$. Setting $x = (1,6)$ and $\phi = \pi/6$, we thus construct the following maps. *Note that* $\cos \phi = \sqrt{3}/2$ *and* $\sin \phi = 1/2$ *.*

$$
T_{-x}: \mathbb{R}^2 \to \mathbb{R}^2, \quad (\xi_1, \xi_2) \mapsto (\xi_1 - 1, \xi_2 - 6),
$$

\n
$$
D_{\phi} \circ T_{-x}: \mathbb{R}^2 \to \mathbb{R}^2, \quad (\xi_1, \xi_2) \mapsto \left(\frac{\sqrt{3}}{2}(\xi_1 - 1) - \frac{1}{2}(\xi_2 - 6), \frac{1}{2}(\xi_1 - 1) + \frac{\sqrt{3}}{2}(\xi_2 - 6)\right),
$$

\n
$$
T_x \circ D_{\phi} \circ T_{-x}: \mathbb{R}^2 \to \mathbb{R}^2, \quad (\xi_1, \xi_2) \mapsto \left(\frac{\sqrt{3}}{2}(\xi_1 - 1) - \frac{1}{2}(\xi_2 - 6) + 1, \frac{1}{2}(\xi_1 - 1) + \frac{\sqrt{3}}{2}(\xi_2 - 6) + 6\right).
$$

Thus, the desired isometry is

$$
D_{x,\phi}: \mathbb{R}^2 \to \mathbb{R}^2, \quad (\xi_1, \xi_2) \mapsto \left(\frac{\sqrt{3}}{2}\xi_1 - \frac{1}{2}\xi_2 + \frac{1}{2}(8-\sqrt{3}), \frac{1}{2}\xi_1 + \frac{\sqrt{3}}{2}\xi_2 + \frac{1}{2}(11-6\sqrt{3})\right).
$$

(ii) The given line $L = L_{1,2,-1}$ is described by

$$
\xi_1 + 2\xi_2 - 1 = 0.
$$

Its perpendicular distance from the origin is simply $d = 1/$ √ $\sqrt{1^2+2^2} = 1/\sqrt{2}$ dicular distance from the origin is simply $d = 1/\sqrt{1^2 + 2^2} = 1/\sqrt{5}$, along the vector $\hat{n} = (1, 2)/\sqrt{1^2 + 2^2} = (1/\sqrt{5}, 2/\sqrt{5})$. Thus, the reflection of the origin lies at $2d\hat{n} = (2/5, 4/5)$.

Now, note that the desired reflection is an isometry, and hence is a mapping of the form

$$
R_L: \mathbb{R}^2 \to \mathbb{R}^2, \quad (\xi_1, \xi_2) \mapsto (a_1\xi_1 + b_1\xi_2 + c_1, a_2\xi_1 + b_2\xi_2 + c_2).
$$

We have already established that $R_L(0,0) = (2/5, 4/5)$, hence $c_1 = 2/5$ and $c_2 = 4/5$. Now, we simply choose two other points on the line L, say $(0, 1/2)$ and $(1, 0)$, which must be fixed points under the reflection. Thus, $b_1/2 + 2/5 = 0$, $b_2/2 + 4/5 = 1/2$, $a_1 + 2/5 = 1$ and $a_2 + 4/5 = 0$. Hence, we obtain

$$
R_L: \mathbb{R}^2 \to \mathbb{R}^2, \quad (\xi_1, \xi_2) \mapsto \left(\frac{3}{5}\xi_1 - \frac{4}{5}\xi_2 + \frac{2}{5}, -\frac{4}{5}\xi_1 - \frac{3}{5}\xi_2 + \frac{4}{5}\right).
$$

(iii) The given isometry is $D_\theta \circ T_x$. Since this is to be equivalent to $D_{(3,2),\theta}$, this isometry must have the fixed point (3, 2), the center of rotation. Thus, $(D_\theta \circ T_x)(3, 2) = (3, 2)$. Applying $D_{-\theta}$ on both sides and using $D_{-\theta} \circ D_{\theta} = \text{Id}$, we have

$$
T_x(3,2) = D_{-\theta}(3,2) = \left(\frac{3}{5}\cdot3 + \frac{4}{5}\cdot2, -\frac{4}{5}\cdot3 + \frac{3}{5}\cdot2\right) = \left(\frac{17}{5}, -\frac{6}{5}\right) = \left(3 + \frac{2}{5}, 2 - \frac{16}{5}\right).
$$

By comparison with $T_x(3, 2) = (3 + x_1, 2 + x_2)$, we must have $x = (2/5, -16/5)$.

Note that we have used $D_{-\theta}(\xi_1, \xi_2) = (\xi_1 \cos \theta + \xi_2 \sin \theta, -\xi_1 \sin \theta + \xi_2 \cos \theta).$

Problem 3. Determine the geometric forms of the mappings

(i) $(\xi_1, \xi_2) \mapsto (\frac{8}{17}\xi_1 + \frac{15}{17}\xi_2 - 1, \frac{15}{17}\xi_1 - \frac{8}{17}\xi_2 + 3).$ (ii) $(\xi_1, \xi_2) \mapsto (\frac{3}{5}\xi_1 + \frac{4}{5}\xi_2 - 10, -\frac{4}{5}\xi_1 + \frac{3}{5}\xi_2 - 1).$

Solution 3.

- (i) The transformation matrix of the given mapping is $\begin{bmatrix} 8/17 & 15/17 \\ 15/17 & -8/17 \end{bmatrix}$, which clearly represents a reflection. Thus, the given mapping is a glide reflection. Note that the determinant of the matrix $is -1.$
- (ii) The transformation matrix of the given mapping is $\begin{bmatrix} 3/5 & 4/5 \\ 4/5 & 2/5 \end{bmatrix}$ −4/5 3/5 , which clearly represents a rotation by the angle $\theta = -\arccos \frac{3}{5}$. The point about which the rotation takes place is the fixed point of the isometry, i.e. we solve

$$
\frac{3}{5}\xi_1 + \frac{4}{5}\xi_2 - 10 = \xi_1
$$

$$
-\frac{4}{5}\xi_1 + \frac{3}{5}\xi_2 - 1 = \xi_2
$$

This yields $x_0 = (-6, 19/2)$. Thus, the given mapping is the (clockwise) rotation $D_{x_0,\theta}$. Note that the determinant of the matrix is $+1$.

Problem 4. Show that if ABC and PQR are triangles in \mathbb{R}^2 such that $|AB| = |PQ|$, $|BC| = |QR|$ and $|CA| = |RP|$, then there is an isometry f on the plane which maps A, B, C onto P, Q, R respectively. When is such an f unique?

Solution 4. We show the existence of f by construction. Let $v = AP$ be the vector stretching from A to P. Thus, applying the isometry T_v maps the points (A, B, C) to (P, B_1, C_1) . Now, the isometry preserves distances, so $|PB_1| = |AB| = |PQ|$. This means that B_1 and Q lie on the same circle centred at P, with radius |AB|. Hence, there exists an angle θ between PB₁ and PQ such that the rotation $D_{P,\theta}$ maps the points (P, B_1, C_1) to (P, Q, C_2) . Again, note that $|PC_2| = |PC_1| = |AC| = |PR|$, and $|QC_2| = |B_1C1| = |BC| = |QR|$. Hence, C_2 lies on the intersection of the circles centred at P and Q with radii |PR| and |QR| respectively. These circles must intersect, since we know that the point R exists. If these circles intersect once, this forces $C_2 = R$ and we are done. Otherwise, the circles intersect twice.

Either $C_2 = R$, or C_2 and R are reflections of each other in the line L containing the segment PQ. Hence, the application of a final reflection R_L maps (P, Q, C_2) to (P, Q, R) . Since the composition of isometries is also an isometry, we have $f = R_L \circ D_{P,\theta} \circ T_v$ (or $f = D_{P,\theta} \circ T_v$ if $C_2 = R$) which is the isometry we seek.

Note that if A, B, and C are collinear, then so are P, Q and R. In this case, the isometry $f' = R_L \circ f$ is a different isometry which also has the desired properties, since P, Q, R all lie on the line L and hence are fixed points of R_L .

Otherwise, let f_1 and f_2 be two isometries which map (A, B, C, X) to (P, Q, R, X_1) and (P, Q, R, X_2) respectively, where X is an arbitrary point in \mathbb{R}^2 . Clearly, if X is one of A, B or C, we must have $X_1 = X_2$. If not, note that we must have $|AX| = |PX_1| = |PX_2|$, $|BX| = |QX_1| = |QX_2|$ and $|CX| = |RX_1| = |RX_2|$, so P, Q and R are all equidistant from X_1 and X_2 . If $X_1 \neq X_2$, this forces P, Q, R to lie on the same line (the locus of points equidistant from two points is a line), which is a contradiction. Hence, $X_1 = X_2$ for all $X \in \mathbb{R}^2$. This means that we must have $f_1 = f_2$.

Thus, the isometry between (A, B, C) and (P, Q, R) is unique iff A, B and C are noncollinear.

 $($ Let $P = (p_1, p_2)$ and $Q = (q_1, q_2)$ be two different points in \mathbb{R}^2 . If $X = (x_1, x_2)$ is to be equidistant from P and Q , then $(p_1-x_1)^2 + (p_2-x_2)^2 = (q_1-x_1)^2 + (q_2-x_2)^2$. Rearranging, $x_1^2 + x_2^2 - 2p_1x_1 - 2p_2x_2 + p_1^2 + p_2^2 =$ $x_1^2 + x_2^2 - 2q_1x_1 - 2q_2x_2 + q_1^2 + q_2^2$, *i.e.* $2(q_1 - p_1)x_1 + 2(q_2 - p_2)x_2 = q_1^2 - p_1^2 + q_2^2 - p_2^2$. Since $p_1 \neq q_1$ or $q_2 \neq q_1$, this is the equation of a line.

Section 2.6 (Conic Sections)

Problem 1. Describe the geometric form of the following curves.

- (i) $\xi_1^2 + 6\xi_1\xi_2 + 9\xi_2^2 + 5\xi_1 + 2\xi_2 + 11 = 0.$
- (ii) $4\xi_1^2 + 4\xi_1\xi_2 10\xi_1 + 8\xi_2 + 15 = 0.$
- (iii) $\xi_1^2 + \xi_1 \xi_2 + \xi_2^2 = 3.$
- (iv) $5\xi_1^2 + 6\xi_1\xi_2 + 5\xi_2^2 256 = 0.$
- (v) $\xi_1^2 2\xi_1\xi_2 + \xi_2^2 = 9.$

Solution 1.

(i) We have

$$
Q: (\xi_1, \xi_2) \mapsto \xi_1^2 + 6\xi_1\xi_2 + 9\xi_2^2 + 5\xi_1 + 2\xi_2 + 11 = (f(x) | x) + 2(b | x) + 11.
$$

The matrix of the quadratic part is $A = \begin{bmatrix} 1 & 3 \\ 3 & 9 \end{bmatrix}$, whose eigenvalues satisfy $(\lambda - 1)(\lambda - 9) = 9$. Thus, the only non-zero eigenvalue is $\lambda = 10$, whose corresponding eigenvector $x_1 = (x_{11}, x_{12})$ satisfies $(x_{11} + 3x_{12}, 3x_{11} + 9x_{12}) = (10x_{11}, 10x_{12}).$ We choose $x_1 = (1, 3)/\sqrt{1^2 + 3^2} = (1/\sqrt{10}, 3/\sqrt{10}).$ The vector orthogonal to x_1 is given by $x_2 = D_{\pi/2}(x_1) = \frac{-3}{\sqrt{10}}.1/\sqrt{10}$. Thus, changing basis to x_1, x_2 , we have

$$
Q(\eta_1 x_1 + \eta_2 x_2) = \lambda \eta_1^2 + \frac{1}{\sqrt{10}} (5 \cdot 1 - 3 \cdot 2)\eta_1 + \frac{1}{\sqrt{10}} (-5 \cdot 3 + 2 \cdot 1)\eta_2 + 11
$$

= $10\eta_1^2 + \frac{11}{\sqrt{10}} \eta_1 - \frac{13}{\sqrt{10}} \eta_2 + 11$
= $10 \left(\eta_1 + \frac{11}{20\sqrt{10}}\right)^2 - \frac{13}{\sqrt{10}} \left(\eta_2 - \frac{4279\sqrt{10}}{5200}\right)$

Thus, the given curve is the parabola

$$
10\zeta_1^2 - \frac{13}{\sqrt{10}}\zeta_2 = 0.
$$

This is also apparent upon noting that $det(A) = 0$, which indicates one zero eigenvalue.

(ii) We have

$$
Q: (\xi_1, \xi_2) \mapsto 4\xi_1^2 + 4\xi_1\xi_2 - 10\xi_1 + 8\xi_2 + 15 = 0 = (f(x) \mid x) + 2(b \mid x) + 11.
$$

The matrix of the quadratic part is $A = \begin{bmatrix} 4 & 2 \\ 2 & 0 \end{bmatrix}$, whose eigenvalues satisfy $(\lambda - 4)\lambda = 4$. Thus, we have the eigenvalues $\lambda_{1,2} = 2 \pm 2\sqrt{2}$. The first eigenvector thus satisfies $2x_{11} = (2 + 2\sqrt{2})x_{12}$, √ so we choose $x_1 = (1 + \sqrt{2}, 1) / \sqrt{(1 + \sqrt{2})^2 + 1^2} = (1 + \sqrt{2}, 1) / \sqrt{4 + 2\sqrt{2}}$ and $x_2 = D_{\pi/2}(x_1) =$ $(-1, 1 + \sqrt{2})/\sqrt{4 + 2\sqrt{2}}$. Thus, changing basis to x_1, x_2 , we have

$$
Q(\eta_1 x_1 + \eta_2 x_2) = \lambda_1 \eta_1^2 + \lambda_2 \eta_2^2 + \frac{1}{\sqrt{4 + 2\sqrt{2}}} (-10 \cdot (1 + \sqrt{2}) + 8)\eta_1 + \frac{1}{\sqrt{4 + 2\sqrt{2}}} (10 \cdot 1 + 8(1 + \sqrt{2}))\eta_2 + 15
$$

\n
$$
= (2 + 2\sqrt{2})\eta_1^2 + (2 - 2\sqrt{2})\eta_2^2 + \frac{(-2 - 10\sqrt{2})\eta_1 + (18 + 8\sqrt{2})\eta_2}{\sqrt{4 + 2\sqrt{2}}} + 15
$$

\n
$$
= (2\sqrt{2} + 2) \left(\eta_1 - \frac{1 + 5\sqrt{2}}{(2 + \sqrt{2})\sqrt{4 + \sqrt{2}}}\right)^2 - (2\sqrt{2} - 2) \left(\eta_2 + \frac{9 + 4\sqrt{2}}{(2 - \sqrt{2})\sqrt{4 + \sqrt{2}}}\right)^2
$$

\n
$$
+ 15 - \frac{(1 + 5\sqrt{2})^2}{(2 + 2\sqrt{2})^2 (4 + 2\sqrt{2})} - \frac{(9 + 4\sqrt{2})^2}{(2 - 2\sqrt{2})^2 (4 + 2\sqrt{2})}
$$

Thus, the given curve is the hyperbola

$$
(2\sqrt{2}+2)\zeta_1^2 - (2\sqrt{2}-2)\zeta_2^2 + k = 0,
$$

for non-zero k. This is also apparent upon noting that $\det(A) < 0$, which indicates eigenvalues of opposing sign.

(iii) We have

$$
Q: (\xi_1, \xi_2) \mapsto \xi_1^2 + \xi_1 \xi_2 + \xi_2^2 - 3 = (f(x) \, | \, x) - 3.
$$

The matrix of the quadratic part is $A = \begin{bmatrix} 1 & 1/2 \\ 1/2 & 1 \end{bmatrix}$, whose eigenvalues satisfy $(\lambda - 1)^2 = 1/4$. Thus, we have the eigenvalues $\lambda_1 = 1/2$ and $\lambda_2 = 3/2$. The first eigenvector x_1 satisfies $x_{11} + x_{12}/2 =$ $(1/2)x_{11}$, so we choose $x_1 = (1,1)/\sqrt{2}$ and $x_2 = D_{\pi/2}(x_1) = (-1,1)/\sqrt{2}$. Thus, changing basis to x_1, x_2 , we have

$$
Q(\eta_1 x_1 + \eta_2 x_2) = \lambda_1 \eta_1^2 + \lambda_2 \eta_2^2 - 3
$$

= $\frac{1}{2} \eta_1^2 + \frac{3}{2} \eta_2^2 - 3$

Thus, the given curve is the ellipse

$$
\frac{1}{2}\zeta_1^2 + \frac{3}{2}\zeta_2^2 - 3 = 0.
$$

This is also apparent upon noting that $\det(A) > 0$, which indicates eigenvalues of the same sign.

(iv) We have

$$
Q: (\xi_1, \xi_2) \mapsto 5\xi_1^2 + 6\xi_1\xi_2 + 5\xi_2^2 - 256 = (f(x) \,|\, x) - 256.
$$

The matrix of the quadratic part is $A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$, whose eigenvalues satisfy $(\lambda - 5)^2 = 9$. Thus, we have the eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 8$. The first eigenvector x_1 satisfies $5x_{11} + 3x_{12} = 2x_{11}$, so we choose $x_1 = (1, -1)$ / √ 2 and $x_2 = D_{\pi/2}(x_1) = (1,1)/$ ec 2. Thus, changing basis to x_1, x_2 , we have

$$
Q(\eta_1 x_1 + \eta_2 x_2) = \lambda_1 \eta_1^2 + \lambda_2 \eta_2^2 - 256
$$

= $2\eta_1^2 + 8\eta_2^2 - 256$

Thus, the given curve is the ellipse

$$
2\zeta_1^2 + 8\zeta_2^2 - 256 = 0.
$$

This is also apparent upon noting that $\det(A) > 0$, which indicates eigenvalues of the same sign.

(v) Note that the given curve is of the form

$$
(\xi_1 - \xi_2)^2 - 3^2 = 0.
$$

Using the difference of squares and separating factors, we obtain the pair of parallel straight lines

$$
\xi_1 - \xi_2 + 3 = 0, \n\xi_1 - \xi_2 - 3 = 0.
$$

Note that the transformation matrix of the quadratic has a determinant of zero. Thus, these parallel straight lines may be interpreted as a degenerate parabola.

Problem Set 6.1 (Introduction to Eigenvalues)

Problem 6. Find the eigenvalues of A, B, AB and BA.

$$
A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \quad AB = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}, \quad BA = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}.
$$

- (i) Are the eigenvalues of AB equal to the eigenvalues of A times the eigenvalues of B ?
- (ii) Are the eigenvalues of AB equal to the eigenvalues of BA ?

Solution 6. The eigenvalues of a 2×2 matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ are simply roots of the characteristic polynomial

$$
f(t) = (a - t)(d - t) - bc = t2 - (a + d)t + (ad - bc).
$$

Thus, we calculate

$$
f_A(t) = t^2 - 2t + 1 = 0,
$$

\n
$$
f_B(t) = t^2 - 2t + 1 = 0,
$$

\n
$$
f_{AB}(t) = t^2 - 4t + 1 = 0,
$$

\n
$$
f_{BA}(t) = t^2 - 4t + 1 = 0,
$$

\n
$$
\lambda_{AB} = 2 \pm \sqrt{3}.
$$

\n
$$
\lambda_{BA} = 2 \pm \sqrt{3}.
$$

\n
$$
\lambda_{BA} = 2 \pm \sqrt{3}.
$$

- (i) Note that the eigenvalues of AB are *not* the product of eigenvalues of A and B.
- (ii) The eigenvalues of AB in this particular case are indeed the eigenvalues of BA. However, they do not share the same corresponding eigenvectors (this is obvious when solving $(AB)v = (BA)v = \lambda v$, which forces $v = 0$).

Problem 14. Solve $det(Q - \lambda I) = 0$ by the quadratic formula to reach $\lambda = \cos \theta \pm i \sin \theta$.

$$
Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.
$$

Note that Q rotates the xy plane by the angle θ , with no real λ 's. Find the eigenvectors of Q by solving $(Q - \lambda I)x = 0.$

Solution 14. Using the identity $\sin^2 \theta + \cos^2 \theta = 1$, we have

$$
f(t) = t^2 - (2\cos\theta)t + (\cos^2\theta + \sin^2\theta) = 0, \qquad \lambda_{\pm} = \frac{1}{2}(2\cos\theta \pm \sqrt{4\cos^2\theta - 4}) = \cos\theta \pm i\sin\theta.
$$

Clearly, the eigenvalues λ_{\pm} are not real (except when $\theta = n\pi$, which corresponds either to a half turn, or the identity).

To solve for the eigenvectors,

$$
Q - \lambda_{\pm}I = \begin{bmatrix} \mp i\sin\theta & -\sin\theta \\ \sin\theta & \mp i\sin\theta \end{bmatrix} = \sin\theta \begin{bmatrix} \mp i & 1 \\ 1 & \mp i \end{bmatrix}
$$

Thus, for eigenvalue $\lambda_+ = \cos \theta + i \sin \theta$,

$$
(Q - \lambda_+ I)v_+ = 0, \qquad \sin \theta \begin{bmatrix} -i & 1 \\ 1 & -i \end{bmatrix} \begin{bmatrix} v_{+1} \\ v_{+2} \end{bmatrix} = 0, \qquad v_{+1} = iv_{+2}.
$$

For eigenvalue $\lambda_{-} = \cos \theta - i \sin \theta$,

$$
(Q - \lambda_{-} I)v_{-} = 0, \qquad \sin \theta \begin{bmatrix} i & 1 \\ 1 & i \end{bmatrix} \begin{bmatrix} v_{-1} \\ v_{-2} \end{bmatrix} = 0, \qquad v_{-1} = -iv_{-2}.
$$

Thus, we choose

$$
v_{+} = \begin{bmatrix} i \\ 1 \end{bmatrix}, \qquad v_{-} = \begin{bmatrix} -i \\ 1 \end{bmatrix}.
$$

Problem 17. The sum of the diagonal entries (the *trace*) equals the sum of the eigenvalues.

$$
A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}
$$
 has $det(A - \lambda I) = \lambda^2 - (a + d)\lambda + (ad - bc) = 0.$

Using the quadratic formula, find the eigenvalues. Find their sum. If $\lambda_1 = 3$ and $\lambda_2 = 4$, find det(A− λ I).

Solution 17. Using the quadratic formula, we write the roots of the given characteristic polynomial as follows.

$$
\lambda_{\pm} = \frac{1}{2} \left((a+d) \pm \sqrt{(a+d)^2 - 4(ad-bc)} \right) = \frac{1}{2} \left((a+d) \pm \sqrt{(a-d)^2 + 4bc} \right).
$$

Their sum $\lambda_+ + \lambda_- = a + d = \text{trace}(A)$.

If $\lambda_1 = 3$ and $\lambda_2 = 4$, then note that these are roots of det(A – λI). Thus,

$$
\det(A - \lambda I) = (\lambda - 3)(\lambda - 4) = \lambda^2 - 7\lambda + 12.
$$

Problem 25. Suppose A and B have the same eigenvalues $\lambda_1, \ldots, \lambda_n$ with the same independent eigenvectors x_1, \ldots, x_n . Then, show that $A = B$.

Solution 25. Note that since A and B have n eigenvalues and independent eigenvectors, we must have $\dim(A) = \dim(B) = n$. Also note that since all eigenvectors $v_i \in V$ are independent, they comprise a basis of the *n* dimensional vector space V. Let $x \in V$ be arbitrary. Thus, x has a unique representation in the basis $\{v_1, \ldots, v_n\}$. For scalars c_1, \ldots, c_n ,

$$
x = c_1v_1 + \cdots + c_nv_n.
$$

Now, we compute the products

$$
Ax = A(c_1v_1 + \dots + c_nv_n) = c_1(Av_1) + \dots + c_n(Av_n) = c_1\lambda_1v_1 + \dots + c_n\lambda_nv_n.
$$

\n
$$
Bx = B(c_1v_1 + \dots + c_nv_n) = c_1(Bv_1) + \dots + c_n(Bv_n) = c_1\lambda_1v_1 + \dots + c_n\lambda_nv_n.
$$

We use the fact that $Av_i = \lambda_i v_i = Bv_i$. Thus, $Ax = Bx$ for all $x \in V$. Hence, we must have $A = B$.

Specifically, we let x_i be such that its ith coordinate is 1 and all other entries are 0. Then $Ax_i = A_i$ and $Bx_i = B_i$, where A_i and B_i are the ith columns of A and B. Thus, since $Ax_i = Bx_i$ for all $i = 1, ..., n$, we see that A and B are equal column by column. Hence, $A = B$.