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Section 2.5 (Distance Preserving Maps)
Problem 1. Construct a rotation Dx,φ which maps (1, 2) and (4, 6) respectively onto (5, 2) and (8,−2)
respectively.

Solution 1. Let the points P = (1, 2) and Q = (4, 6) be mapped to P ′ = (5, 2) and Q′ = (8,−2)
respectively. Consider the vector u = PQ = (3, 4) in R2. Under the isometry Dx,φ, this gets transformed
into the vector v = P ′Q′ = (3,−4). The angle by which u rotates into v must be precisely the angle φ.
Thus, φ = −2 arccos(3/5).

Let x = (x1, x2) be the center of rotation. Thus, we must have equal distances Px = P ′x and Qx = Q′x.
The first forces x1 = 3. Thus, from the second condition, we must have (4 − 3)2 + (6 − x2)

2 =
(8− 3)2 + (−2− x2)

2, which rearranges to (6− x2)
2 − (−2− x2)

2 = 24. Using the difference of squares,
(4− 2x2)(8) = 24, thus x2 = 1

2 . Hence, x = (3, 1
2 ).

Thus, the required isometry is D(3,1/2),−2 arccos(3/5).

Problem 2.

(i) Give the coordinate representation of D(1,6),π/6.

(ii) Give the coordinate representation of the reflection in the line L1,2,−1.

(iii) Find an x so that D(3,2),θ = Dθ ◦ Tx, where θ is such that cos θ = 3/5 and sin θ = 4/5.

Solution 2.

(i) Note that Dx,φ = Tx ◦Dφ ◦ T−x. Setting x = (1, 6) and φ = π/6, we thus construct the following
maps. Note that cosφ =

√
3/2 and sinφ = 1/2.

T−x : R2 → R2, (ξ1, ξ2) 7→ (ξ1 − 1, ξ2 − 6) ,

Dφ ◦ T−x : R2 → R2, (ξ1, ξ2) 7→

(√
3

2
(ξ1 − 1)− 1

2
(ξ2 − 6) ,

1

2
(ξ1 − 1) +

√
3

2
(ξ2 − 6)

)
,

Tx ◦Dφ ◦ T−x : R2 → R2, (ξ1, ξ2) 7→

(√
3

2
(ξ1 − 1)− 1

2
(ξ2 − 6) + 1,

1

2
(ξ1 − 1) +

√
3

2
(ξ2 − 6) + 6

)
.

Thus, the desired isometry is

Dx,φ : R2 → R2, (ξ1, ξ2) 7→

(√
3

2
ξ1 −

1

2
ξ2 +

1

2
(8−

√
3),

1

2
ξ1 +

√
3

2
ξ2 +

1

2
(11− 6

√
3)

)
.

(ii) The given line L = L1,2,−1 is described by

ξ1 + 2ξ2 − 1 = 0.

Its perpendicular distance from the origin is simply d = 1/
√
12 + 22 = 1/

√
5, along the vector

n̂ = (1, 2)/
√
12 + 22 = (1/

√
5, 2/

√
5). Thus, the reflection of the origin lies at 2dn̂ = (2/5, 4/5).
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Now, note that the desired reflection is an isometry, and hence is a mapping of the form

RL : R2 → R2, (ξ1, ξ2) 7→ (a1ξ1 + b1ξ2 + c1, a2ξ1 + b2ξ2 + c2).

We have already established that RL(0, 0) = (2/5, 4/5), hence c1 = 2/5 and c2 = 4/5. Now, we
simply choose two other points on the line L, say (0, 1/2) and (1, 0), which must be fixed points
under the reflection. Thus, b1/2 + 2/5 = 0, b2/2 + 4/5 = 1/2, a1 + 2/5 = 1 and a2 + 4/5 = 0.
Hence, we obtain

RL : R2 → R2, (ξ1, ξ2) 7→
(
3

5
ξ1 −

4

5
ξ2 +

2

5
, −4

5
ξ1 −

3

5
ξ2 +

4

5

)
.

(iii) The given isometry is Dθ ◦ Tx. Since this is to be equivalent to D(3,2),θ, this isometry must have
the fixed point (3, 2), the center of rotation. Thus, (Dθ ◦ Tx)(3, 2) = (3, 2). Applying D−θ on both
sides and using D−θ ◦Dθ = Id, we have

Tx(3, 2) = D−θ(3, 2) =

(
3

5
· 3 + 4

5
· 2,−4

5
· 3 + 3

5
· 2
)

=

(
17

5
,−6

5

)
=

(
3 +

2

5
, 2− 16

5

)
.

By comparison with Tx(3, 2) = (3 + x1, 2 + x2), we must have x = (2/5,−16/5).

Note that we have used D−θ(ξ1, ξ2) = (ξ1 cos θ + ξ2 sin θ,−ξ1 sin θ + ξ2 cos θ).

Problem 3. Determine the geometric forms of the mappings

(i) (ξ1, ξ2) 7→ ( 8
17ξ1 +

15
17ξ2 − 1, 15

17ξ1 −
8
17ξ2 + 3).

(ii) (ξ1, ξ2) 7→ ( 35ξ1 +
4
5ξ2 − 10,− 4

5ξ1 +
3
5ξ2 − 1).

Solution 3.

(i) The transformation matrix of the given mapping is
[
8/17 15/17
15/17 −8/17

]
, which clearly represents a

reflection. Thus, the given mapping is a glide reflection. Note that the determinant of the matrix
is −1.

(ii) The transformation matrix of the given mapping is
[
3/5 4/5
−4/5 3/5

]
, which clearly represents a rota-

tion by the angle θ = − arccos 3
5 . The point about which the rotation takes place is the fixed point

of the isometry, i.e. we solve

3

5
ξ1 +

4

5
ξ2 − 10 = ξ1

−4

5
ξ1 +

3

5
ξ2 − 1 = ξ2

This yields x0 = (−6, 19/2). Thus, the given mapping is the (clockwise) rotation Dx0,θ. Note that
the determinant of the matrix is +1.

Problem 4. Show that if ABC and PQR are triangles in R2 such that |AB| = |PQ|, |BC| = |QR| and
|CA| = |RP |, then there is an isometry f on the plane which maps A, B, C onto P , Q, R respectively.
When is such an f unique?

Solution 4. We show the existence of f by construction. Let v = AP be the vector stretching from
A to P . Thus, applying the isometry Tv maps the points (A,B,C) to (P,B1, C1). Now, the isometry
preserves distances, so |PB1| = |AB| = |PQ|. This means that B1 and Q lie on the same circle centred
at P , with radius |AB|. Hence, there exists an angle θ between PB1 and PQ such that the rotation
DP,θ maps the points (P,B1, C1) to (P,Q,C2). Again, note that |PC2| = |PC1| = |AC| = |PR|, and
|QC2| = |B1C1| = |BC| = |QR|. Hence, C2 lies on the intersection of the circles centred at P and Q with
radii |PR| and |QR| respectively. These circles must intersect, since we know that the point R exists. If
these circles intersect once, this forces C2 = R and we are done. Otherwise, the circles intersect twice.
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Either C2 = R, or C2 and R are reflections of each other in the line L containing the segment PQ. Hence,
the application of a final reflection RL maps (P,Q,C2) to (P,Q,R). Since the composition of isometries
is also an isometry, we have f = RL◦DP,θ ◦Tv (or f = DP,θ ◦Tv if C2 = R) which is the isometry we seek.

Note that if A, B, and C are collinear, then so are P , Q and R. In this case, the isometry f ′ = RL ◦ f is
a different isometry which also has the desired properties, since P , Q, R all lie on the line L and hence
are fixed points of RL.
Otherwise, let f1 and f2 be two isometries which map (A,B,C,X) to (P,Q,R,X1) and (P,Q,R,X2)
respectively, where X is an arbitrary point in R2. Clearly, if X is one of A, B or C, we must have
X1 = X2. If not, note that we must have |AX| = |PX1| = |PX2|, |BX| = |QX1| = |QX2| and
|CX| = |RX1| = |RX2|, so P , Q and R are all equidistant from X1 and X2. If X1 6= X2, this forces
P , Q, R to lie on the same line (the locus of points equidistant from two points is a line), which is a
contradiction. Hence, X1 = X2 for all X ∈ R2. This means that we must have f1 = f2.

Thus, the isometry between (A,B,C) and (P,Q,R) is unique iff A, B and C are noncollinear.

( Let P = (p1, p2) and Q = (q1, q2) be two different points in R2. If X = (x1, x2) is to be equidistant from
P and Q, then (p1−x1)

2+(p2−x2)
2 = (q1−x1)

2+(q2−x2
2). Rearranging, x2

1+x2
2−2p1x1−2p2x2+p21+p22 =

x2
1 + x2

2 − 2q1x1 − 2q2x2 + q21 + q22, i.e. 2(q1 − p1)x1 + 2(q2 − p2)x2 = q21 − p21 + q22 − p22. Since p1 6= q1 or
q2 6= q1, this is the equation of a line. )

Section 2.6 (Conic Sections)
Problem 1. Describe the geometric form of the following curves.

(i) ξ21 + 6ξ1ξ2 + 9ξ22 + 5ξ1 + 2ξ2 + 11 = 0.

(ii) 4ξ21 + 4ξ1ξ2 − 10ξ1 + 8ξ2 + 15 = 0.

(iii) ξ21 + ξ1ξ2 + ξ22 = 3.

(iv) 5ξ21 + 6ξ1ξ2 + 5ξ22 − 256 = 0.

(v) ξ21 − 2ξ1ξ2 + ξ22 = 9.

Solution 1.

(i) We have

Q : (ξ1, ξ2) 7→ ξ21 + 6ξ1ξ2 + 9ξ22 + 5ξ1 + 2ξ2 + 11 = (f(x) |x) + 2(b |x) + 11.

The matrix of the quadratic part is A =

[
1 3
3 9

]
, whose eigenvalues satisfy (λ−1)(λ−9) = 9. Thus,

the only non-zero eigenvalue is λ = 10, whose corresponding eigenvector x1 = (x11, x12) satisfies
(x11 + 3x12, 3x11 + 9x12) = (10x11, 10x12). We choose x1 = (1, 3)/

√
12 + 32 = (1/

√
10, 3/

√
10).

The vector orthogonal to x1 is given by x2 = Dπ/2(x1) = (−3/
√
10, 1/

√
10). Thus, changing basis

to x1, x2, we have

Q(η1x1 + η2x2) = λη21 +
1√
10

(5 · 1− 3 · 2)η1 +
1√
10

(−5 · 3 + 2 · 1)η2 + 11

= 10η21 +
11√
10

η1 −
13√
10

η2 + 11

= 10

(
η1 +

11

20
√
10

)2

− 13√
10

(
η2 −

4279
√
10

5200

)
Thus, the given curve is the parabola

10ζ21 − 13√
10

ζ2 = 0.

This is also apparent upon noting that det(A) = 0, which indicates one zero eigenvalue.
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(ii) We have

Q : (ξ1, ξ2) 7→ 4ξ21 + 4ξ1ξ2 − 10ξ1 + 8ξ2 + 15 = 0 = (f(x) |x) + 2(b |x) + 11.

The matrix of the quadratic part is A =

[
4 2
2 0

]
, whose eigenvalues satisfy (λ − 4)λ = 4. Thus,

we have the eigenvalues λ1,2 = 2 ± 2
√
2. The first eigenvector thus satisfies 2x11 = (2 + 2

√
2)x12,

so we choose x1 = (1 +
√
2, 1)/

√
(1 +

√
2)2 + 12 = (1 +

√
2, 1)/

√
4 + 2

√
2 and x2 = Dπ/2(x1) =

(−1, 1 +
√
2)/
√

4 + 2
√
2. Thus, changing basis to x1, x2, we have

Q(η1x1 + η2x2) = λ1η
2
1 + λ2η

2
2 +

1√
4 + 2

√
2
(−10 · (1 +

√
2) + 8)η1 +

1√
4 + 2

√
2
(10 · 1 + 8(1 +

√
2))η2 + 15

= (2 + 2
√
2)η21 + (2− 2

√
2)η22 +

(−2− 10
√
2)η1 + (18 + 8

√
2)η2√

4 + 2
√
2

+ 15

= (2
√
2 + 2)

(
η1 −

1 + 5
√
2

(2 +
√
2)
√

4 +
√
2

)2

− (2
√
2− 2)

(
η2 +

9 + 4
√
2

(2−
√
2)
√
4 +

√
2

)2

+ 15− (1 + 5
√
2)2

(2 + 2
√
2)2(4 + 2

√
2)

− (9 + 4
√
2)2

(2− 2
√
2)2(4 + 2

√
2)

Thus, the given curve is the hyperbola

(2
√
2 + 2)ζ21 − (2

√
2− 2)ζ22 + k = 0,

for non-zero k. This is also apparent upon noting that det(A) < 0, which indicates eigenvalues of
opposing sign.

(iii) We have
Q : (ξ1, ξ2) 7→ ξ21 + ξ1ξ2 + ξ22 − 3 = (f(x) |x)− 3.

The matrix of the quadratic part is A =

[
1 1/2

1/2 1

]
, whose eigenvalues satisfy (λ−1)2 = 1/4. Thus,

we have the eigenvalues λ1 = 1/2 and λ2 = 3/2. The first eigenvector x1 satisfies x11 + x12/2 =
(1/2)x11, so we choose x1 = (1, 1)/

√
2 and x2 = Dπ/2(x1) = (−1, 1)/

√
2. Thus, changing basis to

x1, x2, we have

Q(η1x1 + η2x2) = λ1η
2
1 + λ2η

2
2 − 3

=
1

2
η21 +

3

2
η22 − 3

Thus, the given curve is the ellipse
1

2
ζ21 +

3

2
ζ22 − 3 = 0.

This is also apparent upon noting that det(A) > 0, which indicates eigenvalues of the same sign.

(iv) We have
Q : (ξ1, ξ2) 7→ 5ξ21 + 6ξ1ξ2 + 5ξ22 − 256 = (f(x) |x)− 256.

The matrix of the quadratic part is A =

[
5 3
3 5

]
, whose eigenvalues satisfy (λ− 5)2 = 9. Thus, we

have the eigenvalues λ1 = 2 and λ2 = 8. The first eigenvector x1 satisfies 5x11 + 3x12 = 2x11, so
we choose x1 = (1,−1)/

√
2 and x2 = Dπ/2(x1) = (1, 1)/

√
2. Thus, changing basis to x1, x2, we

have

Q(η1x1 + η2x2) = λ1η
2
1 + λ2η

2
2 − 256

= 2η21 + 8η22 − 256

Thus, the given curve is the ellipse

2ζ21 + 8ζ22 − 256 = 0.

This is also apparent upon noting that det(A) > 0, which indicates eigenvalues of the same sign.
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(v) Note that the given curve is of the form

(ξ1 − ξ2)
2 − 32 = 0.

Using the difference of squares and separating factors, we obtain the pair of parallel straight lines

ξ1 − ξ2 + 3 = 0,

ξ1 − ξ2 − 3 = 0.

Note that the transformation matrix of the quadratic has a determinant of zero. Thus, these
parallel straight lines may be interpreted as a degenerate parabola.

Problem Set 6.1 (Introduction to Eigenvalues)
Problem 6. Find the eigenvalues of A, B, AB and BA.

A =

[
1 0
1 1

]
, B =

[
1 2
0 1

]
, AB =

[
1 2
1 3

]
, BA =

[
3 2
1 1

]
.

(i) Are the eigenvalues of AB equal to the eigenvalues of A times the eigenvalues of B?

(ii) Are the eigenvalues of AB equal to the eigenvalues of BA?

Solution 6. The eigenvalues of a 2×2 matrix
[
a b
c d

]
are simply roots of the characteristic polynomial

f(t) = (a− t)(d− t)− bc = t2 − (a+ d)t+ (ad− bc).

Thus, we calculate

fA(t) = t2 − 2t+ 1 = 0, λA = 1.

fB(t) = t2 − 2t+ 1 = 0, λB = 1.

fAB(t) = t2 − 4t+ 1 = 0, λAB = 2±
√
3.

fBA(t) = t2 − 4t+ 1 = 0, λBA = 2±
√
3.

(i) Note that the eigenvalues of AB are not the product of eigenvalues of A and B.

(ii) The eigenvalues of AB in this particular case are indeed the eigenvalues of BA. However, they do
not share the same corresponding eigenvectors (this is obvious when solving (AB)v = (BA)v = λv,
which forces v = 0).

Problem 14. Solve det(Q− λI) = 0 by the quadratic formula to reach λ = cos θ ± i sin θ.

Q =

[
cos θ − sin θ
sin θ cos θ

]
.

Note that Q rotates the xy plane by the angle θ, with no real λ’s. Find the eigenvectors of Q by solving
(Q− λI)x = 0.

Solution 14. Using the identity sin2 θ + cos2 θ = 1, we have

f(t) = t2 − (2 cos θ)t+ (cos2 θ + sin2 θ) = 0, λ± =
1

2
(2 cos θ ±

√
4 cos2 θ − 4) = cos θ ± i sin θ.

Clearly, the eigenvalues λ± are not real (except when θ = nπ, which corresponds either to a half turn,
or the identity).

To solve for the eigenvectors,

Q− λ±I =

[
∓i sin θ − sin θ
sin θ ∓i sin θ

]
= sin θ

[
∓i 1
1 ∓i

]
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Thus, for eigenvalue λ+ = cos θ + i sin θ,

(Q− λ+I)v+ = 0, sin θ

[
−i 1
1 −i

] [
v+1

v+2

]
= 0, v+1 = iv+2.

For eigenvalue λ− = cos θ − i sin θ,

(Q− λ−I)v− = 0, sin θ

[
i 1
1 i

] [
v−1

v−2

]
= 0, v−1 = −iv−2.

Thus, we choose

v+ =

[
i
1

]
, v− =

[
−i
1

]
.

Problem 17. The sum of the diagonal entries (the trace) equals the sum of the eigenvalues.

A =

[
a b
c d

]
has det(A− λI) = λ2 − (a+ d)λ+ (ad− bc) = 0.

Using the quadratic formula, find the eigenvalues. Find their sum. If λ1 = 3 and λ2 = 4, find det(A−λI).

Solution 17. Using the quadratic formula, we write the roots of the given characteristic polynomial
as follows.

λ± =
1

2

(
(a+ d)±

√
(a+ d)2 − 4(ad− bc)

)
=

1

2

(
(a+ d)±

√
(a− d)2 + 4bc

)
.

Their sum λ+ + λ− = a+ d = trace(A).

If λ1 = 3 and λ2 = 4, then note that these are roots of det(A− λI). Thus,

det(A− λI) = (λ− 3)(λ− 4) = λ2 − 7λ+ 12.

Problem 25. Suppose A and B have the same eigenvalues λ1, . . . , λn with the same independent
eigenvectors x1, . . . , xn. Then, show that A = B.

Solution 25. Note that since A and B have n eigenvalues and independent eigenvectors, we must have
dim(A) = dim(B) = n. Also note that since all eigenvectors vi ∈ V are independent, they comprise a
basis of the n dimensional vector space V . Let x ∈ V be arbitrary. Thus, x has a unique representation
in the basis {v1, . . . , vn}. For scalars c1, . . . , cn,

x = c1v1 + · · ·+ cnvn.

Now, we compute the products

Ax = A(c1v1 + · · ·+ cnvn) = c1(Av1) + · · ·+ cn(Avn) = c1λ1v1 + · · ·+ cnλnvn.

Bx = B(c1v1 + · · ·+ cnvn) = c1(Bv1) + · · ·+ cn(Bvn) = c1λ1v1 + · · ·+ cnλnvn.

We use the fact that Avi = λivi = Bvi. Thus, Ax = Bx for all x ∈ V . Hence, we must have A = B.

Specifically, we let xi be such that its ith coordinate is 1 and all other entries are 0. Then Axi = Ai and
Bxi = Bi, where Ai and Bi are the ith columns of A and B. Thus, since Axi = Bxi for all i = 1, . . . , n,
we see that A and B are equal column by column. Hence, A = B.
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