MA 1201 : Mathematics II

Satvik Saha, 19MS154 May 11, 2020

Excercise 5 (S.K. Mapa)

Problem 1. Prove that the following sets are enumerable.

- (i) The set of all integral multiples of 5.
- (ii) The set of all integral powers of 2.
- (iii) The set of all ordered pairs $\{(m, n) : m \in \mathbb{Z}, n \in \mathbb{Z}\}.$

Solution 1. We first supply the bijection $f: \mathbb{Z} \to \mathbb{N}$, defined as

$$
f(k) = \begin{cases} 2k+1 & k \ge 0 \\ -2k & k < 0 \end{cases}
$$
, for all $k \in \mathbb{Z}$.

Clearly, f is injective, since for $f(k_1) = f(k_2) = n$, where $k_1, k_2 \in \mathbb{Z}$, k_1 and k_2 must either both be non-negative or both be negative, since n is either odd or even respectively. This directly implies that $k_1 = k_2$. Again, f is surjective, since for arbitrary $n \in \mathbb{N}$, we have $n = f((n-1)/2)$ if n is odd, and $n = f(-n/2)$, if n is even. This proves that f is both injective and surjective, hence, f is bijective, with a well defined inverse $f^{-1} : \mathbb{N} \to \mathbb{Z}$. Hence, \mathbb{Z} is enumerable.

- (i) Let $S = \{5k : k \in \mathbb{Z}\}\$ be the set of all integral multiples of 5. Clearly, $S \subseteq \mathbb{Z}$, since for any $a = 5k \in S$, where $k \in \mathbb{Z}$, we must have $a \in \mathbb{Z}$. Hence, S is an infinite subset of the enumerable set \mathbb{Z} , and is hence enumerable.
- (ii) Let $T = \{2^k : k \in \mathbb{Z}\}\)$ be the set of all integral powers of 2. We supply the bijection $h: \mathbb{Z} \to T$, $h(k) = 2^k$ for all $k \in \mathbb{Z}$. Clearly, for $h(k_1) = h(k_2)$, we must have $2^{k_1} = 2^{k_2} \implies k_1 = k_2$, and for all $s \in T$, there exists $k \in \mathbb{Z}$ such that $s = 2^k$. Thus, we have the bijection $(f \circ h^{-1})$: $T \to \mathbb{N}$, thus proving that T and $\mathbb N$ are equipotent. Hence, T is enumerable.
- (iii) We supply the bijection $g: \mathbb{Z}^2 \to \mathbb{N}^2$,

$$
g(k_1, k_2) = (f(k_1), f(k_2)),
$$
 for all $(k_1, k_2) \in \mathbb{Z}^2$.

Clearly, g is injective since for $g(k_1, k_2) = g(k_3, k_4)$, we must have $f(k_1) = f(k_3)$ and $f(k_2) = f(k_4)$. The bijectivity of f guarantees that $(k_1, k_2) = (k_3, k_4)$. Also, g must be bijective since for any $(m, n) \in \mathbb{N}^2$, we set $k_1 = f^{-1}(m)$, $k_2 = f^{-1}(n)$, so that $g(k_1, k_2) = (m, n)$ and $(k_1, k_2) \in \mathbb{Z}^2$. Now, \mathbb{N}^2 is enumerable. To show this, we supply the injection $h: \mathbb{N}^2 \to \mathbb{N}$,

$$
h(m, n) = 2m 3n, \qquad \text{for all } (m, n) \in \mathbb{N}^2.
$$

Clearly, h is injective since for $h(m_1, n_1) = h(m_2, n_2)$, we have $2^{m_1}3^{n_1} = 2^{m_2}3^{n_2} = k$, and thus $(m_1, n_1) = (m_2, n_2)$ by the unique factorisation of k. Thus, setting $h(\mathbb{N}^2) = B$, we have $B \subseteq \mathbb{N}$, and the bijection $h': \mathbb{N}^2 \to B$. Also, B is infinite. Hence, B is enumerable. The bijections h' and g show that \mathbb{N}^2 must be enumerable, hence \mathbb{Z}^2 must also be enumerable.

$$
\mathbb{Z}^2 \xrightarrow{g} \mathbb{N}^2 \xrightarrow{h'} B \subseteq \mathbb{N}.
$$

Problem 2. Prove that the set of all closed and bounded intervals of the form $[a, b] = \{x \in \mathbb{R} : a \leq b\}$ $x \leq b$ with rational endpoints a, b is enumerable.

Solution 2. Let S be the set of all closed and bounded intervals [a, b], where $a \leq b$, $a, b \in \mathbb{Q}$. We construct $f: S \to \mathbb{Q}^2$,

$$
f([a, b]) = (a, b),
$$
 for all $a \leq b$, where $a, b \in \mathbb{Q}$.

Clearly, f is injective, since for $f([a, b]) = f([c, d])$, we must have $(a, b) = (c, d)$, hence $[a, b] = [c, d]$. Thus, $f' : S \to T$ is a bijection, where $f(S) = T \subseteq \mathbb{Q}^2$, so S and T are equipotent. Also, T is clearly infinite, so T is an infinite subset of \mathbb{Q}^2 .

Now, $\mathbb Q$ is enumerable, so there exists a bijection $g: \mathbb Q \to \mathbb N$. We thus construct the bijection $h: \mathbb Q^2 \to \mathbb N^2$, $h(a, b) = (g(a), g(b))$, for all $a, b \in \mathbb{Q}$. We have already shown that \mathbb{N}^2 is enumerable. Hence, \mathbb{Q}^2 is enumerable, so T is enumerable, and therefore S is enumerable.

Problem 3. Prove that the set of all circles in a plane having rational radii and centres with rational coordinates is enumerable.

Solution 3. Let C be the set of all such circles. Clearly, a circle is fully determined by its radius and the x and y coordinates of its centre. Hence, we have the injection $f: C \to \mathbb{Q}^3$, $f(C_{rxy}) = (r, x, y)$, for all circles $C_{rxy} \in C$. Here, C_{rxy} is the circle with radius $r \geq 0$, centred at (x, y) . Note that f is an injection since (r, x, y) can describe at most one circle. Thus, $f' : C \to S$ is a bijection, where $S = f(C) \subseteq \mathbb{Q}^3$. Note that S is an infinite set, since C is infinite.

Now, we know that \mathbb{Q}^2 and \mathbb{Q} are both enumerable, hence equipotent, so there exists a bijection $g: \mathbb{Q}^2 \to$ Q. We thus construct the bijection $h: \mathbb{Q}^3 \to \mathbb{Q}$, $h(a, b, c) = g(g(a, b), c)$. This means that \mathbb{Q}^3 is also enumerable. Hence, S must also be enumerable, so C is also enumerable.

Problem 4. Prove that the Cartesian product of two enumerable sets is enumerable.

Solution 4. Let $A = \{a_1, a_2, \ldots, a_n, \ldots\}$ and $B = \{b_1, b_2, \ldots, b_n, \ldots\}$ be two arbitrary enumerable sets. We let $A_i = \{(a_i, b_1), (a_i, b_2), \dots\}$ for all $i \in \mathbb{N}$. Clearly, A_i is enumerable, beacuse of the existence of the bijection $f: \mathbb{N} \to A_i$, $f(n) = (a_i, b_n)$. Also, A_i is infinite since B is infinite.

Now, the Cartesian product of A and B can be written as $A \times B = \bigcup_{i \in \mathbb{N}} A_i$. This is the union of the inifinitely many enumerable sets A_i , and is hence enumerable.

Problem 5. Let S be an enumerable set and T be an infinite non-enumerable subset of R. Show that

- (i) $S \cup T$ is non-enumerable.
- (ii) $S \cap T$ is at most enumerable.
- (iii) $S-T$ is at most enumerable.
- (iv) $T-S$ is non-enumerable.

Solution 5.

- (i) Assume that $S \cup T$ is enumerable. This would imply that $T \subseteq S \cup T$, an infinite subset of the enumerable set $S \cup T$, is enumerable. This is a contradiction, hence, $S \cup T$ is non-enumerable.
- (ii) Let $S = \{x_1, x_2, \ldots, x_n, \ldots\}$. We construct the mapping $f: S \cap T \to \mathbb{N}$,

$$
f(x) = n, \qquad \text{for all } x = x_n \in S \cap T.
$$

This function is well defined, since every element $x \in S \cap T$ must belong to S. Also, if $f(y) =$ $f(z) = n$, then we must have $y = x_n = z$, so f is an injection. Thus, $f' : S \cap T \to V$ is a bijection, where $V = f(S \cap T) \subset \mathbb{N}$. V is a subset of the countable subset N, hence is countable. Therefore, $S \cap T$, which is equipotent to V, must also be countable, i.e. at most enumerable.

(iii) Let $S = \{x_1, x_2, \ldots, x_n, \ldots\}$. We again construct the mapping $f: S - T \to \mathbb{N}$,

$$
f(x) = n, \qquad \text{for all } x = x_n \in S - T.
$$

This function is well defined, since every element $x \in S - T$ must belong to S. Also, if $f(y) =$ $f(z) = n$, then we must have $y = x_n = z$, so f is an injection. Thus, $f' : S - T \to U$ is a bijection, where $U = f(S - T) \subseteq \mathbb{N}$. U is a subset of the countable subset \mathbb{N} , hence is countable. Therefore, $S-T$, which is equipotent to U, must also be countable, i.e. at most enumerable.

(iv) Assume that $T-S$ is enumerable. Then, the union of the two enumerable sets $T-S$ and S, which is simply $S \cup T$, must also be enumerable. This is a contradiction. Hence, $T - S$ is non-enumerable.

Problem 6. Prove that the sets A and B are equipotent.

- (i) $A = \{x \in \mathbb{R} : 0 \le x \le 1\}, B = \{x \in \mathbb{R} : 0 \le x \le 1\}.$
- (ii) $A = \{x \in \mathbb{R} : 0 \le x \le 1\}, B = \{x \in \mathbb{R} : a \le x \le b\}.$
- (iii) $A = \{x \in \mathbb{R} : 0 \le x \le 1\}, B = \{x \in \mathbb{R} : 0 \le x \le 1\}.$
- (iv) $A = \{x \in \mathbb{R} : x > 1\}, B = \{x \in \mathbb{R} : x > 1\}.$

Solution 1.

(i) We supply the bijection $f : [0, 1] \rightarrow [0, 1)$,

$$
f(x) = \begin{cases} \frac{1}{n+1} & x = \frac{1}{n} \text{ for any } n \in \mathbb{N} \\ x & x \neq \frac{1}{n} \text{ for any } n \in \mathbb{N} \end{cases}, \qquad \text{for all } x \in [0, 1].
$$

Note that $0 \le f(x) < 1$, so $f([0,1]) \in [0,1)$. Now, if $f(x) = f(y) = z$, either z is of the form $\frac{1}{n+1}$ for $n \in \mathbb{N}$, in which case $x = y = \frac{1}{n}$, or $x = y = z$ otherwise. This, f is injective. In addition, let $z \in [0,1)$ be arbitrary. If z is of the form $\frac{1}{n+1}$ for some $n \in \mathbb{N}$, we have found $f(\frac{1}{n}) = z, \frac{1}{n} \in [0,1]$. Otherwise, $f(z) = z$, where $z \in [0, 1]$. Hence, $f: A \to B$ is a bijection, proving that A and B are equipotent.

Note that there is no $x \in [0,1]$ such that $f(x) = 1$, since $f(1) = \frac{1}{2}$, and for all $y \in [0,1)$, $f(y)$ is either $\frac{1}{n+1} < 1$, or $f(y) = y < 1$.

(ii) We supply the bijection $f : [0,1] \rightarrow [a, b],$

$$
f(x) = a + (b - a)x
$$
, for all $x \in [0, 1]$.

Clearly, if $f(x) = f(y)$, then $a + (b - a)x = a + (b - a)y \implies x = y$. Also, for arbitrary $z \in [a, b]$, we find $x = (z - a)/(b - a) \in [0, 1]$ such that $f(x) = z$. Note that $a \le z \le b \implies 0 \le z - a \le b - a$. Hence, $f: A \rightarrow B$ is a bijection, proving that A and B are equipotent.

(iii) We supply the bijection $f : (0,1) \rightarrow [0,1],$

$$
h(x) = \begin{cases} 0 & x = \frac{1}{2} \\ 1 & x = \frac{1}{3} \\ \frac{1}{n-2} & x = \frac{1}{n} \text{ for any } n > 3, n \in \mathbb{N} \\ x & x \neq \frac{1}{n} \text{ for any } n \in \mathbb{N} \end{cases}
$$
 for all $x \in (0, 1)$.

Note that if $h(x) = h(y) = z$, either $z = 0 \implies x = y = \frac{1}{2}$, or $z = 1 \implies x = y = \frac{1}{3}$, or $z = \frac{1}{n}$ for $n > 3 \implies x = y = \frac{1}{n-2}$, or none of the above, in which case $x = y = z$ again. Thus, h is injective. In addition, for arbitrary $z \in \{0,1\}$, we find $h(\frac{1}{2}) = 0$, $h(\frac{1}{3}) = 1$. For $z \in (0,1)$, where z is of the form $\frac{1}{n}$ for $n \in \mathbb{N}$, we have $h(\frac{1}{n+2}) = z$. For $z \in (0,1)$, $z \neq \frac{1}{n}$, we have $h(z) = z$. This, h is surjective. Hence, $f: B \to A$ is a bijection, proving that A and B are equipotent.

(iv) We supply the bijection $f : [1, \infty) \to (1, \infty)$,

$$
f(x) = \begin{cases} x+1 & x \in \mathbb{N} \\ x & x \notin \mathbb{N} \end{cases}
$$
, for all $x \in [1, \infty)$.

Clearly, if $f(x) = f(y) = z$, either z is an integer or not, and in either case, $x = y$, so f is injective. Also, for arbitrary $z \in (1,\infty)$, if z is an integer, we have $f(z-1) = z$, where $z-1 \geq 1$. Otherwise, $f(z) = z$, where $z > 1$. Thus, f is surjective. Hence, $f: A \rightarrow B$ is a bijection, proving that A and B are equipotent.

Exercises (Bartle and Sherbert)

Problem 1. Prove that a non-empty set T_1 is finite if and only if there is a bijection from T_1 onto a finite set T_2 .

Solution 1. First, let $f: T_1 \to T_2$ be a bijection, where T_2 is finite. We claim that T_1 is finite. Since T_1 is non-empty, T_2 cannot be empty. Let T_2 have n elements. The finiteness of T_2 implies the existence of a bijection $g: \mathbb{N}_n \to T_2$, where $\mathbb{N}_n = \{1, 2, ..., n\}$. Hence, we construct the bijection $h: \mathbb{N}_n \to T_1$, defined by $h = f^{-1} \circ g$. This proves that T_2 has n elements, and hence is finite.

Now let T_1 be non-empty and finite, with $n \in \mathbb{N}$ elements. Then, we have the bijection $f: \mathbb{N}_n \to T_1$, whose inverse $f^{-1} \colon T_1 \to \mathbb{N}_n$ is also a bijection. Setting $T_2 = \mathbb{N}_n$, which is a finite set, we are done.

Problem 2. Prove the following.

- (i) If A is a set with $m \in \mathbb{N}$ elements and $C \subseteq A$ is a set with 1 element, then $A \setminus C$ is a set with $m-1$ elements.
- (ii) If C is an infinite set and B is a finite set, then $C \setminus B$ is an infinite set.

Solution 2.

(i) Let $f: \mathbb{N}_m \to A$ and $g: \{1\} \to C$ be bijections. Let $c \in C$ be the element $c = g(1)$. Let $k = f^{-1}(c)$. Then, we construct the bijection $h: \mathbb{N}_{m-1} \to A \setminus C$,

$$
h(n) = \begin{cases} f(n) & n = 1, 2, \dots, k - 1 \\ f(n + 1) & n = k, k + 1, \dots, m - 1 \end{cases}
$$

.

Note that $f(n) \in A$ for all $n \in \mathbb{N}_m$, and if $n \neq k$, then $f(n) \neq f(k)$ from the injectivity of f, so $f(n) \notin C$. Hence, the function is well defined.

We now show that this is indeed a bijection. Let $a \neq b$, where $a, b \in \mathbb{N}_{m-1}$. If $a < k$ and $b < k$, then $h(a) = f(a)$, $h(b) = f(b)$, so $h(a) \neq h(b)$ by the injectivity of f. Similarly, if $a \geq k$ and $b \ge k$, then $h(a) = f(a+1)$, $h(b) = f(b+1)$, so $h(a) \ne h(b)$. Finally, if $a \ge k$ and $b < k$, then $a + 1 > k > b$, so again $h(a) \neq h(b)$. Thus, h is injective. Now, let $p \in A \setminus C$ be arbitrary. We set $n = f^{-1}(p)$. If $n < k$, then $h(n) = p$, and if $n > k$, then $h(n-1) = p$. We cannot have $n = k$, since that would imply that $f(n) = p = f(k) = c \notin A \setminus C$. Thus, f is also surjective, hence bijective.

Hence, $A \setminus C$ has $m-1$ elements.

We also note the trivial case of $m = 1$, i.e. there exists only one element $x = f(1) \in A$, hence the only subset $C \subseteq A$ having only one element is $C = A = \{x\}$, so $A \setminus C = \emptyset$, which has $m - 1 = 0$ elements.

(ii) We show the result by induction on the number of elements in B. If B is empty, $C \setminus B = C$, and the result is trivial. We establish the base case with B containing 1 element, $x \in B$. Now, if $x \notin C$, $C \setminus B = C$ again. Otherwise, $x \in C$, so $C \setminus B = C \setminus \{x\}$. If this were finite, containing m elements (say), then $(C \setminus \{x\}) \cup \{x\} = C$ would have to contain $m + 1$ elements, and thus be finite as well. This is a contradiction, so $C \setminus B$ is always infinite when B contains exactly 1 element.

Now, suppose that $C \setminus B$ is infinite for all infinite sets C, and for all finite sets B containing exactly n elements. We now choose an arbitrary finite set D containing $n + 1$ elements. Let $x \in D$ be an arbitrary element. Set $F = D \setminus \{x\}$. Thus, F contains n elements (by our previous result). Note that $C \setminus D = (C \setminus F) \setminus \{x\}$. Now, $C \setminus F$ is infinite by our induction hypothesis. Call this set G. We have already shown that $G \setminus \{x\}$ is infinite for any infinite set G. Hence, $C \setminus D$ is infinite for all finite sets D containing $n + 1$ elements.

This completes the proof by induction.

Problem 3. Let $S = \{1, 2\}$ and $T = \{a, b, c\}.$

- (i) Determine the number of different injections from S into T.
- (ii) Determine the number of differnet surjections from T onto S .

Solution 3.

- (i) Let $f: S \to T$ be an injection. Each element of S must be have a unique image in T, and each element of T can have at most one pre-image in S. Hence, there are $3 \times 2 = 6$ injections.
- (ii) Let $q: T \to S$ be a surjection. Each element of S must have at least one pre-image in T. There are $2^3 = 8$ functions from T to S, of which 1 maps all elements to $\{1\}$, and 1 maps all elements to ${2}$. Hence, there are $8 - 2 = 6$ surjections.

Problem 4. Exhibit a bijection between N and the set of all odd integers greater than 13.

Solution 4. We supply the bijection $f: \mathbb{N} \to \{15, 17, \dots\}$,

$$
f(n) = 2n + 13, \qquad \text{for all } n \in \mathbb{N}.
$$

Clearly, if $p \neq q$, then $f(p) = 2p + 13 \neq 2q + 13 = f(q)$, so f is injective. Also, for arbitrary $m = 2k + 1$, $m > 13, k \in \mathbb{N}$, we must have $k > 6$. Thus, we find $n = (m-13)/2 \in \mathbb{N}$, such that $f(n) = m$. Hence, f is also surjective, and is thus a bijection.

Problem 5. Give an explicit definition of a bijection f from $\mathbb N$ onto $\mathbb Z$.

Solution 5. We have $f: \mathbb{N} \to \mathbb{Z}$,

$$
f(n) = \begin{cases} n/2 & n \text{ is even} \\ -(n-1)/2 & n \text{ is odd} \end{cases}.
$$

Problem 6. Exhibit a bijection between N and a proper subset of itself.

Solution 6. We could reuse the solution from Problem 4. Alternatively, we supply the bijection $g: \mathbb{N} \to \mathbb{N} \setminus \{1\},\$

$$
f(n) = n + 1, \qquad \text{for all } n \in \mathbb{N}.
$$

Clearly, if $p \neq q$, then $f(p) = p+1 \neq q+1 = f(q)$. Also, for arbitrary $m \in \mathbb{N} \setminus \{1\}$, we find $n = m-1 \in \mathbb{N}$ such that $f(n) = m$. Hence, f is a bijection.

Problem 7. Prove that a set T_1 is denumerable if and only if there is a bijection from T_1 onto a denumerable set T_2 .

Solution 7. First, let $f: T_1 \to T_2$ be a bijection, where T_2 is denumerable. Then, there exists a bijection $g: \mathbb{N} \to T_2$, so the mapping $f^{-1} \circ g: \mathbb{N} \to T_2$ is a bijection. Hence, T_1 is also denumerable.

Now, let T_1 be denumerable. Thus, we have a bijection $f: \mathbb{N} \to T_1$, whose inverse $f^{-1}: T_1 \to \mathbb{N}$ is also a bijection. Since N is denumerable, we are done.

Problem 8. Give an example of a countable collection of finite sets whose union is not finite.

Solution 8. Let $N_i = \{i\}$, where $i \in \mathbb{N}$. Clearly, each such set is finite, with exactly 1 element. Now, the collection of all such sets, $M = \{N_i : i \in \mathbb{N}\} = \{\{1\}, \{2\}, \dots\}$ is countable. We supply the bijection $f: \mathbb{N} \to M$, $f(n) = N_n$, for all $n \in \mathbb{N}$. However, the union of all N_i is simply $\bigcup_{i \in \mathbb{N}} N_i = \{1, 2, \dots\} = \mathbb{N}$, which is infinite.

Problem 9. Prove in detail that if S and T are denumerable, then $S \cup T$ is denumerable.

Solution 9. Let $f: \mathbb{N} \to S$ and $g: \mathbb{N} \to T$ be bijections. We identify the elements $x_k = f(k)$ and $y_k = g(k)$ for all $n \in \mathbb{N}$, i.e. we write $S = \{x_1, x_2, \dots\}$ and $T = \{y_1, y_2, \dots\}$. Now, we consider two cases.

Case I. $S \cup T = \emptyset$. We construct the bijection $h: \mathbb{N} \to S \cup T$,

$$
h(n) = \begin{cases} f((n+1)/2) & n \text{ is odd} \\ g(n/2) & n \text{ is even} \end{cases}.
$$

Clearly, h is injective since if $a \neq b$, then the injectivity of f and g, together with the disjointedness of S and T means that $h(a) \neq h(b)$. Also, for arbitrary $z \in S \cup T$, we must have exactly one of the following: $z = x_i \in S$, so $h(2i - 1) = z$, or $z = y_j \in T$, so $h(2j) = z$. Thus, $S \cup T$ is denumerable.

Case II. $S \cup T \neq \emptyset$. We set $A_1 = A$, $B_1 = B \setminus A$. Then, $A_1 \cap B_1 = \emptyset$, $A_1 \cup B_1 = A \cup B$, and A_1 is denumerable. Now, $B_1 \subseteq B$ is a subset of a countable set B, so is either finite or denumerable. If B_1 is denumerable, then we have A_1, B_1 denumerable, so $A \cup B = A_1 \cup B_1$ is denumerable by Case I. Otherwise, B_1 is finite. Let $B_1 = \{b_1, b_2, \ldots, b_m\}$ have m elements. Let $A_1 = \{a_1, a_2, \ldots\}$ We construct the bijection $G: \mathbb{N} \to A_1 \cup B_1$,

$$
F(n) = \begin{cases} b_n & n = 1, 2, \dots m \\ a_{n-m} & n = m+1, m+2, \dots \end{cases}
$$
 for all $n \in \mathbb{N}$.

Hence, $A \cup B$ is denumerable.

Problem 10.

- (i) If (m, n) is the 6th point down the 9th diagonal entry of the array (in the given figure), calculate its number according to the given counting method.
- (ii) Given that $h(m, 3) = 19$, find m.

Solution 10.

- (i) The first point in the 9th diagonal of the figure is (1, 9). Moving down 6 points, the sum of the coordinates remains contant while the column number increases, so we have $(m, n) = (6, 4)$. Thus, we calculate $h(6, 4) = \frac{1}{2} \cdot 8 \cdot 9 + 6 = 42$.
- (ii) Given that $h(m, 3) = \frac{1}{2}(m + 3 2)(m + 3 1) + m = 19$, we calculate $\frac{1}{2}(m^2 + 3m + 2) + m =$ $\frac{1}{2}(m^2 + 5m + 2) = 19 \implies m^2 + 5m - 36 = 0.$ For $m \in \mathbb{N}$, we must have $m = 4$.

Problem 11. Determine the number of elements in $\mathcal{P}(S)$, the collection of all subsets of S, for each of the following sets.

- (i) $S = \{1,2\}.$
- (ii) $S = \{1, 2, 3\}.$
- (iii) $S = \{1, 2, 3, 4\}.$

Solution 11.

- (i) We simply count $\mathcal{P}(S) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}\$. Hence, there are 4 elements.
- (ii) For every element T in the previous power set, we include both T and $T \cup \{3\}$ this time. Hence, we have twice the number of elements in $P(S)$, i.e. 8 elements.
- (iii) Again, we have twice the number of element in $\mathcal{P}(S)$ as before, i.e. 16 elements.

Problem 12. Use mathematical induction to show that if the set S has n elements, then $\mathcal{P}(S)$ has 2^n elements.

Solution 12. We establish the base case with $n = 1$. Let the set $S = \{x_1\}$. Then, $\mathcal{P}(S) = \{\emptyset, \{x_1\}\}\$ has exactly $2 = 2^1$ elements.

Now, assume that the given statement holds true for some $k \in \mathbb{N}$. Thus, for any set S with k elements, $\mathcal{P}(S)$ contains 2^k elements. Let T be a finite set of $k+1$ elements, and let $x \in T$ be an element of T. Now, $P = \mathcal{P}(T \setminus \{x\})$ has 2^k elements, since $T \setminus \{x\}$ has k elements. We construct $Q = \{A \cup \{x\} : A \in P\}$, and claim that $P \cap Q = \emptyset$. Indeed, for arbitrary $p \in P$, $x \notin p$ but $x \in q$ for all $q \in Q$. Thus, $P \cup Q$ has $2 \cdot 2^k$ elements, since each element in Q has a one-to-one correspondence with each element in P.

Now, each element $p \in P$ is a subset of T, and so is every element $q \in Q$. Hence, $P \cup Q \subseteq \mathcal{P}(T)$. Also, for any arbitrary element $s \in \mathcal{P}(T)$, we must have one of the following: $x \notin s$, in which case $s \in P$, or $x \in s$, in which case $s \in Q$. Thus, $\mathcal{P}(T) \subseteq P \cup Q$. Hence, $\mathcal{P}(T) = P \cup Q$, and has precisely 2^{k+1} elements. This completes the proof by induction.

Problem 13. Prove that the collection $\mathcal{F}(\mathbb{N})$ of all finite subsets of \mathbb{N} is countable.

Solution 13. We construct the injection $f : \mathcal{F}(\mathbb{N}) \to \mathbb{N}$, $f(\emptyset) = 1$,

$$
f(S) = \prod_{n \in S} p_n, \quad \text{for all } S \in \mathcal{F}(\mathbb{N}) \setminus \{ \emptyset \},
$$

where p_k is the kth prime number. The uniqueness of the prime factorisation of natural numbers guarantees that f is injective. Thus, $\mathcal{F}(\mathbb{N})$ is countable.

We can do even better with the bijection $q: \mathcal{F}(\mathbb{N}) \to \mathbb{N}, q(\emptyset) = 1$,

$$
g(S) = 1 + \sum_{n \in S} 2^{n-1}, \quad \text{for all } S \in \mathcal{F}(\mathbb{N}) \setminus \{ \emptyset \}.
$$

The bijectivity of g is a consequence of the uniqueness of representation of the natural numbers in binary.

Cantor's Diagonal Argument

We show that the collection of all sequences of natural numbers S, or equivalently $\mathbb{N} \times \mathbb{N} \times \mathbb{N} \times \cdots$, is uncountable.

Assume that S is countable. Note that S must be infinite, because $(n, 0, 0, ...) \in S$ for all $n \in \mathbb{N}$. Hence, S must be enumerable. Let $f: \mathbb{N} \to S$ be a bijection. We thus enumerate every element of S as $s_n = f(n) \in S$ for all $n \in \mathbb{N}$. We notate $s_n(k)$ to be the kth element of the sequence s_n . We construct the sequence, s_0 , in the following way: $s_0 : \mathbb{N} \to \mathbb{N}$,

$$
s_0(k) = s_k(k) + 1, \quad \text{for all } k \in \mathbb{N}.
$$

Now, s_0 is clearly a sequence of natural numbers, so $s_0 \in S$. Thus, from the bijectivity of f, s_0 has a unique inverse, $f^{-1}(s_0) = c$. This would imply that $s_0 = s_c$, i.e. $s_0(c) = s_c(c)$. However, $s_0(c) = s_c(c) + 1$ by definition. This is a contradiction. Hence, S is uncountable.