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Problem 1 Show that the vectors (a,b) and (c,d) in R? are linearly independent iff ad — be # 0.

Solution We first let (a,b) and (¢, d) be linearly indepenedent. Now, if ad — be = 0, then without loss
of generality, either a = b = 0, in which case (a,b) is the zero vector (0,0), or a = 0 and d = 0, in which
case one of b or ¢ is also 0, so one of (a,b) and (¢, d) is the zero vector (0,0), or a =0, d # 0 and ¢ =0,
in which case

d<07b) + (_b) (O’d) = (070)7

or a,b,c,d # 0, in which case
c (a7 b) + (7@) (Ca d) = (07 O)

This is a contradiction, hence we must have ad — be # 0.
Now we assume ad — bc # 0. If (a,b) and (¢, d) were linearly dependent, we find A, u, at least one of
which is non-zero, such that
/\(a7b) + :u(c7 d) = (an)a

i,e. Aa = —pc and \b = —ud. If p = 0, that forces a = b = 0, and hence ad — bc = 0. Similary, A = 0
forces ¢ = d = 0, and hence ad — be = 0. Finally, for A, p # 0, we have

Aulad —be) = (Aa)(ud) — (=Ab)(—pc) = 0,

and thus ad — be = 0. In all cases, we reach a contradiction. Hence, (a,b) and (c,d) must be linearly
independent. O

Problem 2 Show that if v and w are linearly independent vectors in R?, then so are v +w and v — w.

Solution We assume the contrary, i.e. we find A and p, at least one of which is non-zero, such that
Av+w)+pv—w) =0 = A+pv+(A—pw = 0.

The linear independence of v and w demands both A + ¢ = 0 and A — p = 0. However, this is only
possible if A = p = 0. This is a contradiction. Hence, v +w and v — w must be linearly independent. [

Problem 3 Show that the following are bases of R2.
(1) {(1,2), (4,3)}-
(i) {(1,1), (1,-1)}.
Solution
(i) Let (a,b) € R? be arbitrary. We seek A, u € R such that
A(1,2) + pu(4,3) = (a,b).
Solving the system of equations

A+4dp = a
220+ 3u =0

we find A = (—3a +4b)/5 and p = (2a — b)/5.



We now show that this is a unique solution. Let (A1, p1) and (Mg, p2) be two pairs of solutions to
the above system. If

)\1(172) + /~L1(473) = )\2(172) + /~L2(473) = (avb)v
then
(A1 = A2)(1,2) + (p1 — p2)(4,3) = 0.

Using the result in Problem 1, we find that (1,2) and (4, 3) are linearly independent, since 1-3 —
2 -4 # 0. Thus, we must have A\ — Ay = 1 — po = 0, thus proving uniqueness.

Hence, any arbitrary vector in R? can be uniquely expressed as a linear combination of the two
given vectors, i.e. they comprise a basis of R2. O

(ii) Let (a,b) € R? be arbitrary. Again, we seek A, u € R such that
A(L,1) + w(l,-1) = (a,b).
Solving the system of equations
A4+ pu=a
A—pu=12>
we find A = (a +b)/2 and p = (a —b)/2.

We now show that this is a unique solution. Let (A1, p1) and (Mg, p2) be two pairs of solutions to
the above system. If

>\1(171) + Nl(la_l) = )\2(1a1) + /~L2(1’_1) = (avb)a
then
(A1 = A2)(1,1) + (p1 — p2)(1,-1) = 0.

Using the result in Problem 1, we find that (1,1) and (1,—1) are linearly independent, since
1-1 = 1-(=1) # 0. Thus, we must have \; — Ao = p1 — po = 0, thus proving uniqueness.

Hence, any arbitrary vector in R? can be uniquely expressed as a linear combination of the two
given vectors, i.e. they comprise a basis of R?. O

Problem 4 Show that any set containing 3 vectors in R? is linearly dependent. Also show that any
linearly independent set of 2 vectors in R? is a basis of R2.

Solution Let u,v,w € R? be arbitrary, with v = (u1,uz2), v = (v1,v2) and w = (wy,w;). Note that
if any two of w,v,w are linearly dependent, say u and v, then all three are linearly dependent, i.e. if
c1,c2 € R, where at least one of them is non-zero, then

cau +cov = 0 = cqu + cov+0w = 0.

Contrapositively, if u,v,w are all linearly indepenedent, then any two of them, say u and v, are also
linearly independent.

Assume u, v and w are linearly independent. Then, u and v are linearly independent, i.e. A, =
uyvg — ugv1 # 0. Consider the system of equations

Aup + pvr = wp

Aug + pva = wa
It is easily verified that A = (wjvy — wav1)/A, and p = (ugwy — ugwy)/A,, is a solution to the above
system. Moreover, since u and w are linearly independent, A, = ujws — usw; # 0 and since w and v
are linearly independent, A, = wive — wovy # 0. Thus, A, u # 0. However, this means that

Au + pv —w = 0.

This is a contradiction. Hence, any set of 3 vectors in R? must be linearly dependent.



Let u,v € R? be linearly independent. We show that they form a basis of R2. Let w € R? be
arbitrary. Like before, we define

Ay = v — Uy,
A, = wwy — Ug2wi,
Au = W1V — WaV3.

The linear independence of u and v means that A,, # 0. Again, it is easily verified that Au + pv = w,
where A = A, /A, and u = A, /A,,. Furthermore, this solution is unique since if

MU+ v = dou + pev = w,

then we must have
(A1 = A2)u + (p1 — p2)v = 0.

The linear independence of u and v demands A\; — Ay = 3 — e = 0.
Hence, an arbitrary vector in w € R? can always be uniquely represented as a linear combination of
two linearly independent vectors u,v € R?, i.e. {u,v} form a basis of R2.

Problem 5 Let T: R? — R3, T(z1,22) = (x1,72,0). Show that T is linear and find the matrix of T'
with respect to the standard bases of R% and R3.

Solution Let z1,x2,y1,¥y2, ¢ € R be arbitrary. We verify
T(x)+T(y) = (z1,22,0) + (y1,42,0) = (21 +y1,72 +¥2,0) = T(21 +y1,72 +y2) = T(x+Yy),

T'(x) = ¢(r1,22,0) = (cx1,022,0) = T(cx1,cx2) = T(cx).

Hence, T is linear. Let V. = {vi,va} and W = {wy, wa, w3z} be the standard bases of R? and R?
respectively. Then,

[T = (T(vo)lw [T(v2)lw) = (T(1,0) T(0,1)) =

O O =
o~ O

Problem 6 Let T: R? — R? T(x1,73) = (221, —3x2). Show that T is linear and find the matrix of T
with respect to the standard basis of R2.

Solution Let z1,x2,y1,¥y2, ¢ € R be arbitrary. We verify
T(x)+T(y) = (2z1,=322)+ (291, —3y2) = (221+2y1, —322—3y2) = T(w1+y1,22+y2) = T(x+y),

T(x) = ¢(221,—3z2) = (2cx1,—3cx2,0) = T(cxy1,cxe) = T(cx).
Hence, T is linear. Clearly,

= o 1o = (7 0.

Problem 7 Let T: R?> — R3, T(x,y) = (z,7+v,y). Find the matrix of T with respect to the standard
bases of R? and R3.

Solution LetV = {vi,va}and W = {w;,wa, ws} be the standard bases of R? and R? respectively.
Then,

1 0
T(vi) = [1], T(ve) = |1
0 1
Thus,
1 0
[T] = (T(v1) T(v2)) = 1 1
0 1



Problem 8

(i) Show that {(2,1,1),(1,2,2),(1,1,1)} is linearly dependent in R3.

(ii) Show that {(1,2,2),(2,1,2),(2,2,1)} is linearly independent in R3.

(iii) Show that {(0,1,1),(1,0,1),(1,1,0)} is a basis of R3.

Solution

(i) We supply the relation

2 1 1
11+12]-3|1] =0
1 2 1
(ii) Let ¢1,c2,c3 € R such that
1 2 2
C1 2 + C2 1 + C3 2 = O
2 2 1

We obtain the system of linear equations

€1+ 2ca+2¢c5 = 0,
2c1 4+ co+2c3 = 0,
261+262+03 = 0

Now, (1) + (2) - 3(3) gives 2¢3 = 0. Hence, from (1) and (2), ¢; = —2c, = —2(—2¢;), from which
we have ¢; = co = ¢3 = 0. Moreover, Cramer’s rule tells us that this solution is unique, since the

determinant

N DN
N — N

This proves that the given set of vectors are linearly independent.

(iii) Let c1,c2,c3 € R such that
0 1 1
C1 1 + Co 0 + C3 1 = O
1 1 0

We obtain the system of linear equations

co+c3 = 0,
c1+c3 = 0,
c1+co = 0

2
2/ = (1+8+8)—(4+4+4) = 5#0.
1

Now, (1) + (2) - (3) gives 2¢c3 = 0. Hence, from (1) and (2), ¢; = ¢ = ¢5 = 0. Moreover,

Cramer’s rule tells us that this solution is unique, since the determinant

— = O
_ O =

1
1| = (0+1+1)—(0+0+0) = 2#£0.
0

This proves that the given set of vectors are linearly independent.

Let v = (v, v9,v3) € R? be arbitrary. We seek ay, as, a3 € R such that

0 1 1
ar |1 ] +ax (0| +ag|1] = v.
1 1 0



Like before, this is equivalent to solving the system of linear equations

az +az = vy,
a1 +ag = v,
a1 +az = vs,

whose solution exists and is unique from Cramer’s rule. It is easily verified that

2a1 = —vy +v2 +v3,
2a2 = v1 — V2 + U3,
2a3 = v1 + vy — v3.

Hence, any vector v € R3 is uniquely expressible in terms of the given vectors, which proves that
they are a basis of R?.

Problem 9 Let 7,S: R? — R? be defined by T'(z,y) = (z,0) and S(z,y) = (0,y), where z,y € R.
Find the mappings S oT and T o S. Let [L] be the matrix representation of a linear mapping L in the
standard basis. Check that [S o T'| = [S] [T, with respect to the standard basis of R?.

Solution Let z,y € R be arbitrary. We have (SoT),(T oT): R? — R?
(SoT)(x,y) = S(T(z,y)) = S(x,0) = (0,0),

(T'oS)(z,y) = T(S(z,y)) = T(0,y) = (0,0).
In the standard basis of R2,

T(].,O) = (170)3 T(O’l) = (030),
S(1,0) = (0,0), S(0,1) = (0,1),
(SoT)(1,0) = (0,0), (SoT)(0,1) = (0,0)

Hence,

7] = ((1) 8) 1s] = (8 (1)) SoT] = (8 8)

It is easily verified that
0 0\/1 0y (0 O
0 1/\0 0o/ — \o 0/

Problem 10 Let T: R?® — R?, such that T'(x,y,2) = (32 —2y+ 2,2 — 3y — 2z), for z,y, 2 € R3. Find
[T] with respect to the standard bases of R? and R2.

Hence, [SoT] = [S][T].

Solution We calculate

T(1,0,0) = (3,1), T(0,1,0) = (—2,-3), 7(0,0,1) = (1,-2).

3 -2 1
= <1 -3 —2) '
Problem 11 Let 7:R?® — R? and let 3 = {(0,1,1),(1,0,1),(1,1,0)} and v = {(1,0),(1,1)} be

bases of R3 and R? respectively. Let
1 2 4
7
715 = (2 1 0)

be the matrix representation of 7" in the bases 8 and ~. Find T'(z, v, 2).

Hence, we have



Solution We have

[T(Ovlal)]"/ = (1’2) [T(laovl)]’y = (27 1) [T(].,].,O)]»y = (470)
T(0,1,1) = (1,0)+2(1,1) T(1,0,1) = 2(1,0) + (1,1) T(1,1,0) = 4(1,0)
T(0,1,1) = (3,2) T(1,0,1) = (3,1) T(1,1,0) = (4,0)

We reuse the calculation in Problem 8(iii) to note that the coordiantes of an arbitrary vector v =
(z,y,2) € R3, in the basis 3 are given by [v]g = ((y +2 — 2)/2, (x + 2 — y)/2, (x + y — 2)/2). Hence,

T(w,y,2) = %(y—&-z—x) (3,2)+%(x+z—y) (3,1)—1—%(1‘4—3}—2) (4,0) = <2x+2y+z,;(—x+y+3z)>.



