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Solution 1.

(i) We claim that
lim
n→∞

n

n2 + 1
= 0.

To prove this, let ε > 0. We seek k(ε) ∈ N such that for all n ≥ k, n ∈ N,∣∣∣∣ n

n2 + 1

∣∣∣∣ < ε.

Now, since n2 + 1 > n2,
n

n2 + 1
<

n

n2
=

1

n
.

Thus, setting k(ε) = b1/εc+ 1 > 1/ε, for all n ≥ k,

n

n2 + 1
<

1

n
≤ 1

k
< ε.

This completes the proof.

(ii) We claim that
lim

n→∞

2n

n+ 1
= 2.

To prove this, let ε > 0. We seek k(ε) ∈ N such that for all n ≥ k, n ∈ N,∣∣∣∣ 2n

n+ 1
− 2

∣∣∣∣ =
2

n+ 1
< ε.

Now,
2

n+ 1
<

2

n
.

Thus, setting k(ε) = b2/εc+ 1 > 2/ε completes the proof.

(iii) We claim that
lim
n→∞

3n+ 1

2n+ 5
=

3

2
.

To prove this, let ε > 0. We seek k(ε) ∈ N such that for all n ≥ k, n ∈ N,∣∣∣∣3n+ 1

2n+ 5
− 3

2

∣∣∣∣ =
13/2

2n+ 5
< ε.

Now,
13/2

2n+ 5
<

13

4n
.

Thus, setting k(ε) = b13/4εc+ 1 > 13/4ε completes the proof.
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(iv) We claim that

lim
n→∞

n2 − 1

2n2 + 3
=

1

2
.

To prove this, let ε > 0. We seek k(ε) ∈ N such that for all n ≥ k, n ∈ N,∣∣∣∣ n2 − 1

2n2 + 3
− 1

2

∣∣∣∣ =
5/2

2n2 + 3
< ε.

Now,
5/2

2n2 + 3
<

5

4n2
≤ 5

4n
.

Thus, setting k(ε) = b5/4εc+ 1 > 5/4ε completes the proof.

Solution 2. Let xn ≥ 0 for all n ∈ N, and limn→∞ xn = L. We claim that limn→∞
√
xn =

√
L.

To prove this, let ε > 0 be given.
Note that since xn ≥ 0, we must have L ≥ 0.†

If L = 0, then we find k′ ∈ N such that for all n ≥ k′, n ∈ N, |xn| < ε2. Thus, we have |√xn| < ε for all
n ≥ k′, as desired.
Otherwise, L > 0. Since {xn}n converges to L, we find k ∈ N such that for all n ≥ k, n ∈ N,

|xn − L| <
√
L ε.

Now, for all n ≥ k, n ∈ N,

|
√
xn −

√
L| =

|xn − L|
|√xn +

√
L|

<

√
L ε

√
xn +

√
L

≤ ε.

This proves our claim.

Solution 3. Let limn→∞ xn = L. We claim that limn→∞ |xn| = |L|.
To prove this, let ε > 0. We find k ∈ N such that for all n ≥ k, n ∈ N,

|xn − L| < ε.

Now, for all n ≥ k, n ∈ N,
||xn| − |L|| ≤ |xn − L| < ε.‡

This proves our claim.

The converse of the given statement is false. We supply the counterexample xn = (−1)n for all n ∈ N.
The sequence {|xn|}n = {1}n clearly converges to 1, yet {(−1)n}n diverges.

†If L < 0, we find k ∈ N such that for all n ≥ k, n ∈ N, |xn − L| < −L. This implies that L− (−L) < xn < L+ (−L),
i.e. 2L < xn < 0, a contradiction.

‡The Triangle Inequality gives
|xn| = |(xn − L) + L| ≤ |xn − L|+ |L|,
|L| = |(L− xn) + xn ≤ |xn − L|+ |xn|.

Thus,
−|xn − L| ≤ |xn| − |L| ≤ |xn − L|.
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Solution 4. Let limn→∞ xn = L and limn→∞ yn = L. We claim that limn→∞ zn = L, where {zn}n is
the sequence defined by

z2n−1 = xn

z2n = yn

for all n ∈ N.
To prove this, let ε > 0. We find k1, k2 ∈ N such that

|xn − L| < ε, for all n ≥ k1, n ∈ N,

|yn − L| < ε, for all n ≥ k2, n ∈ N.
Thus, for all n ≥ max{2k1 − 1, 2k2}, n ∈ N,

|zn − L| = |z2m−1 − L| = |xm − L| < ε, if n is odd,
|zn − L| = |z2m − L| = |ym − L| < ε, if n is even.

This proves our claim.

Solution 5.

(i) We claim that
lim
n→∞

(2n + 3n)
1
n = 3.

To prove this, we observe that for all n ∈ N,

(0 + 3n)
1
n < (2n + 3n)

1
n < (3n + 3n)

1
n .

Taking limits as n → ∞, (3n) 1
n → 3 and (2 · 3n) 1

n → 1 · 3 = 3. Thus, using the Sandwich Theorem,
we conclude that (2n + 3n)

1
n → 3.

(ii) We claim that

lim
n→∞

1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
= 0.

To prove this, we set

xn =
1 · 3 · 5 · · · (2n− 1)

2 · 4 · 6 · · · (2n)
=

n∏
k=1

2k − 1

2k
.

Now, (n+ 1)2 = n2 + 2n+ 1 > n2 + 2n = n(n+ 1), for all n ∈ N. Thus, n
n+1 < n+1

n+2 . Therefore,

x2
n =

n∏
k=1

2k − 1

2k
· 2k − 1

2k
<

n∏
k=1

2k − 1

2k
· 2k

2k + 1
=

1

2n+ 1
.

Using xn > 0, for all n ∈ N, we have

0 < xn <
1√

2n+ 1
.

Taking limits as n → ∞, 1√
2n+1

→ 0. Hence, using the Sandwich Theorem, we conclude that
xn → 0.

Remark. We can obtain slightly tighter bounds on xn by observing that for all k ∈ N,

4k − 3

4k + 1
≤

(
2k − 1

2k

)2

≤ 3k − 2

3k + 1
.

This gives us
n∏

k=1

4k − 3

4k + 1
≤

n∏
k=1

(
2k − 1

2k

)2

≤
n∏

k=1

3k − 2

3k + 1
.

1√
4n+ 1

≤ xn ≤ 1√
3n+ 1

.
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Solution 6. Let limn→∞ xn = 0 and {yn}n be a bounded sequence. We claim that limn→∞ xnyn = 0.
To prove this, let ε > 0. Since {yn}n is bounded, we find M ∈ R such that |yn| < M for all n ∈ N.
Again, since {xn}n converges to 0, we find k ∈ N such that for all n ≥ k, n ∈ N,

|xn| <
ε

|M |
.

Hence, for all n ≥ k, n ∈ N, we have
|xnyn| < |xn||M | < ε.

This proves our claim.

To compute limn→∞(−1)nn/(n2 + 1), we note that the sequence n/(n2 + 1) → 0 and (−1)n is bounded.
Hence,

lim
n→∞

(−1)nn

n2 + 1
= 0.

Solution 7.

(i) We wish to compute limn→∞ n
1
n2 . We observe that for all n ∈ N,

1 ≤ n < 1 + n ≤
(
1 +

1

n

)n2

.

The last inequality follows from the Binomial Theorem. Thus,

1 ≤ n
1
n2 < 1 +

1

n
.

Taking limits as n → ∞, 1
n → 0. Hence, using the Sandwich Theorem, we conclude that n

1
n2 → 1.

(ii) We wish to compute limn→∞(n!)
1
n2 . We observe that for all n ∈ N,

1 ≤ n! ≤ nn,

1 ≤ (n!)
1
n2 ≤ n

1
n .

Taking limits as n → ∞, n
1
n → 1, Hence, using the Sandwich Theorem, we conclude that

(n!)
1
n2 → 1.

Solution 8. We claim that the sequence defined by xn = sin(nπ2 ), for all n ∈ N, diverges.
Suppose not, i.e. the given sequence converges to L. Then, we find k ∈ N such that for all n ≥ k, n ∈ N,

|xn − L| < 1

4
.

Observe that x4k = 0 and x4k+1 = 1. Thus,

1 = |x4k − x4k+1| ≤ |x4k − L|+ |x4k+1 − L| <
1

4
+

1

4
=

1

2
.

This is a contradiction, thus proving our claim.
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Solution 9.

(i) We show that limn→∞(2n)
1
n = 1. Note that as n → ∞, the sequences 2 1

n → 1 and n
1
n → 1. Hence,

their product also converges to 1.

(ii) We show that limn→∞ n2/n! = 0. Note that for all n ≥ 6, n ∈ N, we have n! > n3. This is easily
shown by induction, since 6! > 63, and if k! > k3, then (k+1)! = (k+1) ·k! > (k+1)k3 > (k+1)3.
The last inequality holds since k > 5 =⇒ k3 > 5k2 > k2 + 2k2 + k2 > k2 + 2k + 1. Hence, for all
n ≥ 6, n ∈ N, we have

0 <
n2

n!
<

1

n
.

Taking limits as n → ∞, 1
n → 0. Applying the Sandwich Theorem yields the desired result.

(iii) We show that limn→∞ 2n/n! = 0 . Note that for all n ≥ 6, n ∈ N, we have (n − 1)! > 2n. This
is easily shown by induction, since 5! > 26, and if (k − 1)! > 2k, then k! = k · (k − 1)! > k · 2k >
2 · 2k = 2k+1. The last inequality holds since k ≥ 6. Hence, for all n ≥ 6, n ∈ N, we have

0 <
2n

n!
<

1

n
.

Taking limits as n → ∞, 1
n → 0. Applying the Sandwich Theorem yields the desired result.
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