MA 1101 : Mathematics I

Satvik Saha, 19MS154 October 27, 2019

Solution 1. Let $\emptyset \neq D \subseteq \mathbb{R}$, let $c \in D$ and let $f: D \to \mathbb{R}$ be continuous at *c* with $f(c) > 0$. We claim that there exists $\delta > 0$ such that

$$
f(x) > 0
$$
, for all $x \in (c - \delta, c + \delta) \cap D$.

Since f is continuous at c, we find $\delta_c > 0$ such that

$$
|f(x) - f(c)| < \frac{1}{2}f(c), \text{ for all } x \in (c - \delta_c, c + \delta_c) \cap D.
$$

Suppose that our claim is false, i.e. there exists at least one $x_0 \in (c - \delta_c, c + \delta_c) \cap D$ such that $f(x_0) \leq 0$. Then, $f(x_0) - f(c) < 0 \Rightarrow |f(x_0) - f(c)| = f(c) - f(x_0) \ge f(c)$, a contradiction. Hence, setting $\delta = \delta_c$ proves our claim. proves our claim.

Solution 2. Let $\emptyset \neq D \subseteq \mathbb{R}$, let $c \in D$ and let $f, g \colon D \to R$ be continuous at *c*.

(i) We claim that $f + g$ is continuous at c .

Let $\epsilon > 0$ be given. We find δ_f , δ_g such that for all $x \in D$,

$$
|x - c| < \delta_f \implies |f(x) - f(c)| < \epsilon/2,
$$
\n
$$
|x - c| < \delta_g \implies |g(x) - g(c)| < \epsilon/2.
$$

We set $\delta = \min{\delta_f, \delta_q}$. Then, for all $x \in D$ satisfying $|x - c| < \delta$, we have

$$
|(f(x) + g(x)) - (f(c) + g(c))| = |(f(x) - f(c)) + (g(x) - g(c))|
$$

\n
$$
\leq |f(x) - f(c)| + |g(x) - g(c)|
$$

\n
$$
< \epsilon/2 + \epsilon/2
$$

\n
$$
= \epsilon
$$

This proves our claim.

(ii) We claim that for all $\alpha \in \mathbb{R}$, αf is continuous at *c*.

Let $\epsilon > 0$ be given. If $\alpha \neq 0$, we find δ_f such that for all $x \in D$,

$$
|x - c| < \delta_f \implies |f(x) - f(c)| < \epsilon / |\alpha|.
$$

We set $\delta = \delta_f$. Then, for all $x \in D$ satisfying $|x - c| < \delta$, we have

$$
|\alpha f(x) - \alpha f(c)| = |\alpha||f(x) - f(c)|
$$

$$
< |\alpha| \frac{\epsilon}{|\alpha|}
$$

$$
= \epsilon
$$

If $\alpha = 0$, we trivially have

$$
|x - c| < \delta = \epsilon \implies |\alpha f(x) - \alpha f(c)| = 0 < \epsilon.
$$

This proves our claim.

 \Box

(iii) We claim that *fg* is continuous at *c*.

Let $\epsilon > 0$ be given. We find $\delta_1, \delta_2, \delta_3, \delta_4$ such that for all $x \in D$,

$$
|x - c| < \delta_1 \implies |f(x) - f(c)| < \sqrt{\epsilon/2},
$$
\n
$$
|x - c| < \delta_2 \implies |g(x) - g(c)| < \sqrt{\epsilon/2},
$$
\n
$$
|x - c| < \delta_3 \implies |f(x) - f(c)| < \epsilon/4(1 + |g(c)|),
$$
\n
$$
|x - c| < \delta_4 \implies |g(x) - g(c)| < \epsilon/4(1 + |f(c)|).
$$

We set $\delta = \min\{\delta_1, \delta_2, \delta_3, \delta_4\}$. Then, for all $x \in D$ satisfying $|x - c| < \delta$, we have

$$
\begin{aligned}\n|(fg)(x) - (fg)(c)| &= |f(x)g(x) - f(c)g(c)| \\
&= |((f(x) - f(c)) + (g(x) - g(c)) + g(c)) - f(c)g(c)| \\
&= |((f(x) - f(c)) + (g(x) - g(c)) + f(c)(g(x) - g(c)) + g(c)(f(x) - f(c)) + f(c)g(c) - f(c)g(c)| \\
&= |((f(x) - f(c)) + (g(x) - g(c)) + f(c)(g(x) - g(c)) + g(c)(f(x) - f(c))| \\
&\le |f(x) - f(c)||g(x) - g(c)| + |f(c)||g(x) - g(c)| + |g(c)||f(x) - f(c)| \\
&< \sqrt{\frac{\epsilon}{2}} \sqrt{\frac{\epsilon}{2}} + \frac{|f(c)|\epsilon}{4(1 + |f(c)|} + \frac{|g(c)|\epsilon}{4(1 + |g(c)|)} \\
&< \frac{\epsilon}{2} + \frac{\epsilon}{4} + \frac{\epsilon}{4} \\
&= \epsilon\n\end{aligned}
$$

This proves our claim.

(iv) We claim that if $g(c) \neq 0$, f/g is continuous at *c*. To prove this, we first show that $h: D \to \mathbb{R}$, $h(x) = 1/g(x)$ is continuous at *c*.

Let $\epsilon > 0$ be given. We find δ_1, δ_2 such that for all $x \in D$,

$$
|x - c| < \delta_1 \implies |g(x) - g(c)| < \frac{1}{2}|g(c)|,
$$
\n
$$
|x - c| < \delta_2 \implies |g(x) - g(c)| < \frac{1}{2}\epsilon|g(c)|^2.
$$

We set $\delta = \min\{\delta_1, \delta_2\}$. Then, for all $x \in D$ satisfying $|x - c| < \delta$, we have

$$
\frac{1}{2}|g(c)| > |g(x) - g(c)|
$$
\n
$$
\geq ||g(x)| - |g(c)||
$$
\n
$$
\geq |g(c)| - |g(x)|
$$
\n
$$
|g(x)| > \frac{1}{2}|g(c)| > 0
$$
\n
$$
\frac{1}{|g(x)|} < \frac{2}{|g(c)|}
$$
\n
$$
|h(x) - h(c)| = \left|\frac{1}{g(x)} - \frac{1}{g(c)}\right|
$$
\n
$$
= \frac{|g(x) - g(c)|}{|g(c)g(x)|}
$$
\n
$$
= |g(x) - g(c)|\frac{1}{|g(c)||g(x)|}
$$
\n
$$
< \frac{1}{2}\epsilon|g(c)|^2\frac{2}{|g(c)|^2}
$$
\n
$$
= \epsilon
$$

Thus, h is continuous at c . Therefore, $f/g = fh$ is continuous at c .

 \Box

Solution 3. Let $I \subseteq \mathbb{R}$ be an open interval, let $c \in I$ and let $f, g \colon D \to R$ be differentiable at c . Note that *f, g* are continuous at *c*.

Since f, g are differentiable at c , we have the following.

$$
f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}
$$

$$
g'(c) = \lim_{x \to c} \frac{g(x) - g(c)}{x - c}
$$

(i) We claim that $f + g$ is differentiable at *c* and $(f + g)'(c) = f'(c) + g'(c)$. Note that

$$
f'(c) + g'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} + \lim_{x \to c} \frac{g(x) - g(c)}{x - c}
$$

=
$$
\lim_{x \to c} \frac{f(x) - f(c)}{x - c} + \frac{g(x) - g(c)}{x - c}
$$

=
$$
\lim_{x \to c} \frac{(f(x) + g(x)) - (f(c) + g(c))}{x - c}
$$

=
$$
\lim_{x \to c} \frac{(f + g)(x) - (f + g)(c)}{x - c}
$$

=
$$
(f + g)'(c)
$$

Hence,

$$
(f+g)'(c) = \lim_{x \to c} \frac{(f+g)(x) - (f+g)(c)}{x - c} = f'(c) + g'(c)
$$

This proves our claim.

(ii) We claim that for all $\alpha \in \mathbb{R}$, αf is differentiable at *c* and $(\alpha f)'(c) = \alpha f'(c)$. Note that

$$
\alpha f'(c) = \alpha \lim_{x \to c} \frac{f(x) - f(c)}{x - c}
$$

$$
= \lim_{x \to c} \frac{\alpha f(x) - \alpha f(c)}{x - c}
$$

$$
= \lim_{x \to c} \frac{(\alpha f)(x) - (\alpha f)(c)}{x - c}
$$

$$
= (\alpha f)'(c)
$$

Hence,

$$
(\alpha f)'(c) = \lim_{x \to c} \frac{(\alpha f)(x) - (\alpha f)(c)}{x - c} = \alpha f'(c)
$$

This proves our claim.

(iii) We claim that *fg* is differentiable at *c* and $(fg)'(c) = f'(c)g(c) + f(c)g'(c)$. Note that since *c* is a limit point of *I*, $f(c) = \lim_{x \to c} f(x)$ and $g(c) = \lim_{x \to c} g(x)$.

$$
f'(c)g(c) + f(c)g'(c) = g(c) \lim_{x \to c} \frac{f(x) - f(c)}{x - c} + \lim_{x \to c} f(x) \lim_{x \to c} \frac{g(x) - g(c)}{x - c}
$$

=
$$
\lim_{x \to c} \frac{(f(x) - f(c))g(c) + f(x)(g(x) - g(c))}{x - c}
$$

=
$$
\lim_{x \to c} \frac{f(x)g(c) - f(c)g(c) + f(x)g(x) - f(x)g(c)}{x - c}
$$

=
$$
\lim_{x \to c} \frac{f(x)g(x) - f(c)g(c)}{x - c}
$$

=
$$
\lim_{x \to c} \frac{(fg)(x) - (fg)(c)}{x - c}
$$

=
$$
(fg)'(c)
$$

 \Box

Hence,

$$
(fg)'(c) = \lim_{x \to c} \frac{(fg)(x) - (fg)(c)}{x - c} = f'(c)g(c) + f(c)g'(c)
$$

This proves our claim.

(iv) We claim that if $g(c) \neq 0$, f/g is differentiable at c and $(f/g)'(c) = (f'(c)g(c) - f(c)g'(c))/g(c)^2$. To prove this, we first show that $h: D \to \mathbb{R}$, $h(x) = 1/g(x)$ is differentiable at *c* and $h'(c) =$ *−g*['](*c*)/*g*(*c*)².

Note that *h* is continuous and *c* is a limit point of *I*, hence $h(c) = \lim_{x \to c} h(x)$.

$$
-\frac{g'(c)}{g(c)^2} = -\frac{1}{g(c)^2} \lim_{x \to c} \frac{g(x) - g(c)}{x - c}
$$

=
$$
\frac{1}{g(c)} \lim_{x \to c} \frac{1}{g(x)} \lim_{x \to c} \frac{g(c) - g(x)}{x - c}
$$

=
$$
\lim_{x \to c} \frac{\frac{1}{g(x)} - \frac{1}{g(c)}}{x - c}
$$

=
$$
\lim_{x \to c} \frac{h(x) - h(c)}{x - c}
$$

=
$$
h'(c)
$$

Hence,

$$
h'(c) = -g'(c)/g(c)^2
$$

Using the product rule,

$$
(f/g)'(c) = (fh)'(c) = f'(c)h(c) + f(c)h'(c) = f'(c)/g(c) - f(c)g'(c)/g(c)^2
$$

This proves our claim.

Solution 4.

(i) We claim that for all $x > 0$,

$$
\frac{x}{1+x} < \ln(1+x) < x.
$$

Let $f, g : (0, \infty) \to \mathbb{R}$ be defined as follows.

$$
f(x) = \ln(1+x) - \frac{x}{1+x}, \text{ for all } x > 0,
$$

$$
g(x) = x - \ln(1+x), \text{ for all } x > 0,
$$

We note that

$$
f'(x) = \frac{1}{1+x} - \frac{(1+x) - x}{(1+x)^2}
$$

=
$$
\frac{(1+x) - (1+x) + x}{(1+x)^2}
$$

=
$$
\frac{x}{(1+x)^2}
$$

> 0

$$
g'(x) = 1 - \frac{1}{1+x}
$$

=
$$
\frac{(1+x) - 1}{1+x}
$$

=
$$
\frac{x}{1+x}
$$

> 0

 \Box

Thus, *f* and *q* are monotonically increasing on $(0, \infty)$. We can write

$$
f(x) > \lim_{t \to 0} f(t) = 0
$$

$$
g(x) > \lim_{t \to 0} g(t) = 0
$$

Therefore,

$$
\ln(1+x) > \frac{x}{1+x}
$$

$$
x > \ln(1+x)
$$

This proves our claim.

(ii) We claim that for all $x > 0$,

$$
e^x > 1 + x + \frac{1}{2}x^2.
$$

Let $f: [0, x] \to \mathbb{R}$ be defined as $f(t) = e^t$, for all $t \in [0, x]$. Clearly, f is continuous in $[0, x]$ and differentiable in $(0, x)$. Note that $f'(t) = f(t) = e^t$. Hence, f, f' are continuous on $[0, x]$ and $f'' = f$ exists in $(0, x)$.

Using Taylor's Theorem, we find $c \in (0, x)$ such that

$$
e^x = e^0 + e^0(x - 0) + \frac{1}{2}e^c(x - 0)^2.
$$

Since, $e^0 = 1$ and $e^c > 1$ for $c > 0$, we have

$$
e^x > 1 + x + \frac{1}{2}x^2.
$$

This proves our claim.

(iii) We claim that for all $x, y \in \mathbb{R}$,

$$
|\sin x - \sin y| \le |x - y|.
$$

Note that if $x = y$, our claim is trivially true.

Without loss of generality, let $x > y$. Let $f, g : [x, y] \to \mathbb{R}$ be defined as follows.

$$
f(t) = \sin t, \text{ for all } t \in [x, y],
$$

$$
g(t) = t, \text{ for all } t \in [x, y].
$$

Clearly, f and g are continuous in $[x, y]$ and differentiable in (x, y) . Note that $f'(t) = \cos t$ and $g'(t) = 1.$

Using Cauchy's Mean Value Theorem, we find $c \in (x, y)$ such that.

$$
(\sin x - \sin y) = (x - y)\cos c.
$$

Since $\cos c \leq 1$,

$$
|\sin x - \sin y| \le |x - y|.
$$

This proves our claim.

 \Box

 \Box