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Solution 1. Let ∅ ̸= D ⊆ R, let c ∈ D and let f : D → R be continuous at c with f(c) > 0. We claim
that there exists δ > 0 such that

f(x) > 0, for all x ∈ (c− δ, c+ δ) ∩D.

Since f is continuous at c, we find δc > 0 such that

|f(x)− f(c)| < 1

2
f(c), for all x ∈ (c− δc, c+ δc) ∩D.

Suppose that our claim is false, i.e. there exists at least one x0 ∈ (c− δc, c+ δc)∩D such that f(x0) ≤ 0.
Then, f(x0) − f(c) < 0 ⇒ |f(x0) − f(c)| = f(c) − f(x0) ≥ f(c), a contradiction. Hence, setting δ = δc
proves our claim.

Solution 2. Let ∅ ̸= D ⊆ R, let c ∈ D and let f, g : D → R be continuous at c.

(i) We claim that f + g is continuous at c.
Let ϵ > 0 be given. We find δf , δg such that for all x ∈ D,

|x− c| < δf =⇒ |f(x)− f(c)| < ϵ/2,

|x− c| < δg =⇒ |g(x)− g(c)| < ϵ/2.

We set δ = min{δf , δg}. Then, for all x ∈ D satisfying |x− c| < δ, we have

|(f(x) + g(x))− (f(c) + g(c))| = |(f(x)− f(c)) + (g(x)− g(c))|
≤ |f(x)− f(c)|+ |g(x)− g(c)|
< ϵ/2 + ϵ/2

= ϵ

This proves our claim.

(ii) We claim that for all α ∈ R, αf is continuous at c.
Let ϵ > 0 be given. If α ̸= 0, we find δf such that for all x ∈ D,

|x− c| < δf =⇒ |f(x)− f(c)| < ϵ/|α|.

We set δ = δf . Then, for all x ∈ D satisfying |x− c| < δ, we have

|αf(x)− αf(c)| = |α||f(x)− f(c)|

< |α| ϵ

|α|
= ϵ

If α = 0, we trivially have

|x− c| < δ = ϵ =⇒ |αf(x)− αf(c)| = 0 < ϵ.

This proves our claim.
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(iii) We claim that fg is continuous at c.
Let ϵ > 0 be given. We find δ1, δ2, δ3, δ4 such that for all x ∈ D,

|x− c| < δ1 =⇒ |f(x)− f(c)| <
√

ϵ/2,

|x− c| < δ2 =⇒ |g(x)− g(c)| <
√
ϵ/2,

|x− c| < δ3 =⇒ |f(x)− f(c)| < ϵ/4(1 + |g(c)|),

|x− c| < δ4 =⇒ |g(x)− g(c)| < ϵ/4(1 + |f(c)|).

We set δ = min{δ1, δ2, δ3, δ4}. Then, for all x ∈ D satisfying |x− c| < δ, we have

|(fg)(x)− (fg)(c)| = |f(x)g(x)− f(c)g(c)|
= |(f(x)− f(c) + f(c))(g(x)− g(c) + g(c))− f(c)g(c)|
= |(f(x)− f(c))(g(x)− g(c)) + f(c)(g(x)− g(c)) + g(c)(f(x)− f(c)) + f(c)g(c)− f(c)g(c)|
= |(f(x)− f(c))(g(x)− g(c)) + f(c)(g(x)− g(c)) + g(c)(f(x)− f(c))|
≤ |f(x)− f(c)||g(x)− g(c)|+ |f(c)||g(x)− g(c)|+ |g(c)||f(x)− f(c)|

<

√
ϵ

2

√
ϵ

2
+

|f(c)|ϵ
4(1 + |f(c|)

+
|g(c)|ϵ

4(1 + |g(c|)

<
ϵ

2
+

ϵ

4
+

ϵ

4
= ϵ

This proves our claim.

(iv) We claim that if g(c) ̸= 0, f/g is continuous at c. To prove this, we first show that h : D → R,
h(x) = 1/g(x) is continuous at c.
Let ϵ > 0 be given. We find δ1, δ2 such that for all x ∈ D,

|x− c| < δ1 =⇒ |g(x)− g(c)| < 1

2
|g(c)|,

|x− c| < δ2 =⇒ |g(x)− g(c)| < 1

2
ϵ|g(c)|2.

We set δ = min{δ1, δ2}. Then, for all x ∈ D satisfying |x− c| < δ, we have

1

2
|g(c)| > |g(x)− g(c)|

≥ ||g(x)| − |g(c)||
≥ |g(c)| − |g(x)|

|g(x)| >
1

2
|g(c)| > 0

1

|g(x)|
<

2

|g(c)|

|h(x)− h(c)| =

∣∣∣∣ 1

g(x)
− 1

g(c)

∣∣∣∣
=

|g(x)− g(c)|
|g(c)g(x)|

= |g(x)− g(c)| 1

|g(c)||g(x)|

<
1

2
ϵ|g(c)|2 2

|g(c)|2

= ϵ

Thus, h is continuous at c. Therefore, f/g = fh is continuous at c.
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Solution 3. Let I ⊆ R be an open interval, let c ∈ I and let f, g : D → R be differentiable at c.
Note that f, g are continuous at c.
Since f, g are differentiable at c, we have the following.

f ′(c) = lim
x→c

f(x)− f(c)

x− c

g′(c) = lim
x→c

g(x)− g(c)

x− c

(i) We claim that f + g is differentiable at c and (f + g)′(c) = f ′(c) + g′(c).
Note that

f ′(c) + g′(c) = lim
x→c

f(x)− f(c)

x− c
+ lim

x→c

g(x)− g(c)

x− c

= lim
x→c

f(x)− f(c)

x− c
+

g(x)− g(c)

x− c

= lim
x→c

(f(x) + g(x))− (f(c) + g(c))

x− c

= lim
x→c

(f + g)(x)− (f + g)(c)

x− c

= (f + g)′(c)

Hence,

(f + g)′(c) = lim
x→c

(f + g)(x)− (f + g)(c)

x− c
= f ′(c) + g′(c)

This proves our claim.

(ii) We claim that for all α ∈ R, αf is differentiable at c and (αf)′(c) = αf ′(c).
Note that

αf ′(c) = α lim
x→c

f(x)− f(c)

x− c

= lim
x→c

αf(x)− αf(c)

x− c

= lim
x→c

(αf)(x)− (αf)(c)

x− c

= (αf)′(c)

Hence,

(αf)′(c) = lim
x→c

(αf)(x)− (αf)(c)

x− c
= αf ′(c)

This proves our claim.

(iii) We claim that fg is differentiable at c and (fg)′(c) = f ′(c)g(c) + f(c)g′(c).
Note that since c is a limit point of I, f(c) = limx→c f(x) and g(c) = limx→c g(x).

f ′(c)g(c) + f(c)g′(c) = g(c) lim
x→c

f(x)− f(c)

x− c
+ lim

x→c
f(x) lim

x→c

g(x)− g(c)

x− c

= lim
x→c

(f(x)− f(c))g(c) + f(x)(g(x)− g(c))

x− c

= lim
x→c

f(x)g(c)− f(c)g(c) + f(x)g(x)− f(x)g(c)

x− c

= lim
x→c

f(x)g(x)− f(c)g(c)

x− c

= lim
x→c

(fg)(x)− (fg)(c)

x− c

= (fg)′(c)
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Hence,

(fg)′(c) = lim
x→c

(fg)(x)− (fg)(c)

x− c
= f ′(c)g(c) + f(c)g′(c)

This proves our claim.

(iv) We claim that if g(c) ̸= 0, f/g is differentiable at c and (f/g)′(c) = (f ′(c)g(c) − f(c)g′(c))/g(c)2.
To prove this, we first show that h : D → R, h(x) = 1/g(x) is differentiable at c and h′(c) =
−g′(c)/g(c)2.
Note that h is continuous and c is a limit point of I, hence h(c) = limx→c h(x).

− g′(c)

g(c)2
= − 1

g(c)2
lim
x→c

g(x)− g(c)

x− c

=
1

g(c)
lim
x→c

1

g(x)
lim
x→c

g(c)− g(x)

x− c

= lim
x→c

1
g(x) −

1
g(c)

x− c

= lim
x→c

h(x)− h(c)

x− c

= h′(c)

Hence,
h′(c) = −g′(c)/g(c)2

Using the product rule,

(f/g)′(c) = (fh)′(c) = f ′(c)h(c) + f(c)h′(c) = f ′(c)/g(c)− f(c)g′(c)/g(c)2

This proves our claim.

Solution 4.

(i) We claim that for all x > 0,
x

1 + x
< ln(1 + x) < x.

Let f, g : (0,∞) → R be defined as follows.

f(x) = ln(1 + x)− x

1 + x
, for all x > 0,

g(x) = x− ln(1 + x), for all x > 0,

We note that

f ′(x) =
1

1 + x
− (1 + x)− x

(1 + x)2

=
(1 + x)− (1 + x) + x

(1 + x)2

=
x

(1 + x)2

> 0

g′(x) = 1− 1

1 + x

=
(1 + x)− 1

1 + x

=
x

1 + x

> 0
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Thus, f and g are monotonically increasing on (0,∞). We can write

f(x) > lim
t→0

f(t) = 0

g(x) > lim
t→0

g(t) = 0

Therefore,
ln(1 + x) >

x

1 + x

x > ln(1 + x)

This proves our claim.

(ii) We claim that for all x > 0,
ex > 1 + x+

1

2
x2.

Let f : [0, x] → R be defined as f(t) = et, for all t ∈ [0, x]. Clearly, f is continuous in [0, x] and
differentiable in (0, x). Note that f ′(t) = f(t) = et. Hence, f, f ′ are continuous on [0, x] and f ′′ = f
exists in (0, x).
Using Taylor’s Theorem, we find c ∈ (0, x) such that

ex = e0 + e0(x− 0) +
1

2
ec(x− 0)2.

Since, e0 = 1 and ec > 1 for c > 0, we have

ex > 1 + x+
1

2
x2.

This proves our claim.

(iii) We claim that for all x, y ∈ R,
| sinx− sin y| ≤ |x− y|.

Note that if x = y, our claim is trivially true.
Without loss of generality, let x > y. Let f, g : [x, y] → R be defined as follows.

f(t) = sin t, for all t ∈ [x, y],

g(t) = t, for all t ∈ [x, y].

Clearly, f and g are continuous in [x, y] and differentiable in (x, y). Note that f ′(t) = cos t and
g′(t) = 1.
Using Cauchy’s Mean Value Theorem, we find c ∈ (x, y) such that.

(sinx− sin y) = (x− y) cos c.

Since cos c ≤ 1,
| sinx− sin y| ≤ |x− y|.

This proves our claim.
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