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Solution 1. Let  # D C R, let ¢ € D and let f: D — R be continuous at ¢ with f(c) > 0. We claim
that there exists 6 > 0 such that

f(x)>0, forall z € (c—d,c+d)ND.

Since f is continuous at ¢, we find d. > 0 such that
1
lf(z) = f(o)] < §f(c), for all z € (¢ — dc,c+.) N D.

Suppose that our claim is false, i.e. there exists at least one zg € (¢ — ¢, ¢+ 0.) N D such that f(xg) <
Then, f(zg) — f(c) < 0= |f(zo) — f(c)] = f(e) = f(xo) > f(c), a contradiction. Hence, setting § =
proves our claim.
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Solution 2. Let  # D C R, let ¢ € D and let f,g: D — R be continuous at c.
(i) We claim that f + ¢ is continuous at c.
Let € > 0 be given. We find 4, d, such that for all z € D,
[z —cf <dp = |f(z) - f(d)| <€/2,
|z —c| <ég = |g(z) —g(c)] < €/2.
We set 6 = min{d¢,d,}. Then, for all € D satisfying |z — ¢| < J, we have
[(f(2) + g(2)) = (f(c) + g9(e)] = [(f(2) = f(e) + (9(x) = g(c))]|
[f (@) = f(e)l + lg(x) — g(c)
€/2+¢/2

€

ANVAN

This proves our claim. O

(ii) We claim that for all & € R, a.f is continuous at c.

Let € > 0 be given. If a # 0, we find 6 such that for all z € D,
v —c| <65 = [f(z) = flo)] <€/lal.
We set 6 = 7. Then, for all x € D satisfying |z — ¢| < §, we have

laf(z) —af(c)] = |al|f(z) = f(c)
< |a|‘%|

=€
If @ = 0, we trivially have
[t —c<d=€¢ = |af(z) —af(c)]=0<e

This proves our claim. O



(iii) We claim that fg is continuous at c.
Let € > 0 be given. We find 61, d2, d3, d4 such that for all z € D,

[z —c| <81 = |f(z) = f(c)] < Ve/2,

o — | <8 = lg(z) —g(c)| < Ve/2,
[z —c| <ds = [f(z) = fc)] <e/4(1+]g(c)]),
[z —c| <1 = |g(x) —g(c)] < e/4(1 +[f(0)]).

We set 6 = min{dy, 02, d3,d4}. Then, for all z € D satisfying |z — ¢| < J, we have

[(f9)(x) = (f9) (o)l = |f(z)g(z) — f(c)g(c)]
= [(f(z) = fle) + f(e)(g(z) — g(c) + g(c)) — f(c)g(c)|
= [(f (@) = f(e))(g(x) — g(c)) + f(c)(g(x) — g(c)) + g(c)(f(z) — f(c))
= |( (fv) fe)g(@) —g(c)) + f(e)(g(x) — g(c)) + g(o)(f(x) — f(c))]
< |f(@) - f(C)Ilg( ) 9@ + £ ()llg(x) = g(c)] + lg()IIf (x) — f(c)]
lg(c)|e
<\[\[ R e * T b
< §+Z+Z
This proves our claim. O

(iv) We claim that if g(c) # 0, f/g is continuous at ¢. To prove this, we first show that h: D — R,
h(z) = 1/g(x) is continuous at c.

Let € > 0 be given. We find 61, §3 such that for all x € D,
1
v~ <01 = |g(z) —g(c)| < Slg()l,
1 2
|z~ <62 = |g(z) — g(c)| < Selg(c)]".

We set 0 = min{dq,d2}. Then, for all © € D satisfying |z — ¢| < §, we have

Slo()] > lg(a) — (o)

> lg(z)| = lg(c)]]
> g(c)| = |g(z)]
o)l > Llae)] >0
12
lg(@)] lg(c)
) = h(@)| = | = -
_ lg(@) —g(o)|
l9(c)g(z)
1
= 196 =9l @)
2
< *6|g(0)| | (C)|2
Thus, h is continuous at ¢. Therefore, f/g = fh is continuous at c. O



Solution 3. Let I C R be an open interval, let ¢ € I and let f,g: D — R be differentiable at c.

Note that f, g are continuous at c.

Since f, g are differentiable at ¢, we have the following.
T—c T —c
oy g 9(@) —g(c)
g(e) = lim =——
(i) We claim that f + g is differentiable at ¢ and (f + g)'(¢) = f'(c) + ¢'(¢).
Note that
f'(e)+4'(c) = lim J@) = Je) + lim 9(x) = 9(c)
r—c Tr —C r—c T —cC
o S S 9@~ g0
z—e I —C T —c
o (@) 9@) ~ (70 +9(c)
T—c T —cC
iy ST 9@) — (F+9)(e)
T—c T —cC
= (f+9)(c)
Hence,

This proves our claim.

(ii) We claim that for all &« € R, af is differentiable at ¢ and (af)'(¢) = af’'(c).

Note that

af'(c)

Hence,

(af)() = lim

Tr—c

This proves our claim.

- afe) - af
_ ahe) - (eh))
— e

(af)(x) = (af)(c)

Tr —cC

= af'(c)

(iii) We claim that fg is differentiable at ¢ and (fg)'(c) = f'(c)g(c) + f(c)g'(c).
Note that since ¢ is a limit point of I, f(¢) = lim,_,. f(z) and g(c) = lim,_,. g(z).

f'(e)g(e) + f(e)g'(c) = glc) i@w + lim f(2) lim w
@) = £(@)ele) + F@) o) — gle)
7 Halgld) — 5000 + @) - S@)glo
g — et
o) - ()
- oo



Hence,
(fo)(c) = lim Y9 = F9))

T—cC xTr—c

= f(c)g(c) + fe)g'(¢)

This proves our claim. O

(iv) We claim that if g(c) # 0, f/g is differentiable at ¢ and (f/g)'(c) = (f'(c)g(c) — f(c)g'(c))/g(c)?.
To prove this, we first show that h: D — R, h(z) = 1/g(x) is differentiable at ¢ and h'(c) =

—g'(c)/9(c)*.
Note that h is continuous and c¢ is a limit point of I, hence h(c) = lim,_,. h(x).
/ j—
AC i 9(2) — 9(¢)
g(c)? gle)? e=me  w—c
1 1 —
= — lim lim 9(c) ~ 9(z)
90 o g(@) e a—c
1 1
— Jim =) 9(9)
Tr—cC r — C

L B@) = h(o)

T—c A

= W(c)

Hence,

Using the product rule,
(f/9)'(c) = (fh)'(c) = f()h(e) + f(e)h'(c) = [f'(c)/9(c) = f(e)g'(c)/g(c)?

This proves our claim. O
Solution 4.

(i) We claim that for all x > 0,

T <In(l+2z) < x.

Let f,g: (0,00) — R be defined as follows.

fl@) = In(1+z) — H%, for all z > 0,

g(x) = z—In(1+=z), for all x > 0,

We note that
1 (I4+z)—=z

(I +r)-(+z) 42
N (1+2)2
B x
(142
> 0
, 1
g =1-1—
(I 4z)—-1
B 1+
oz
14z
>



(i)

(iii)

Thus, f and g are monotonically increasing on (0,00). We can write
f(z) >lm f(¢t) =0
t—0
0

g(w) > lim (1) =

Therefore,
x

In(1 >
n(l+ z) T2
x> In(l+ x)

This proves our claim. O

We claim that for all > 0,
1
e*>14+x+ §x2.

Let f:[0,z] — R be defined as f(t) = €', for all ¢t € [0,z]. Clearly, f is continuous in [0, z] and
differentiable in (0, ). Note that f'(t) = f(t) = e!. Hence, f, f’ are continuous on [0, z] and f” = f
exists in (0, z).

Using Taylor’s Theorem, we find ¢ € (0, ) such that
x 0 0 1 c 2
ef=¢e +e (x—0)+§e (z —0)~.
Since, e =1 and e® > 1 for ¢ > 0, we have

x 1 2
e >1+x+§x.

This proves our claim. O

We claim that for all z,y € R,
|sinz —siny| < |z — yl.

Note that if x = y, our claim is trivially true.

Without loss of generality, let « > y. Let f,g: [x,y] — R be defined as follows.
f(t) = sint, for all t € [z,y],
g(t) = t, forallt € [z,y].

Clearly, f and g are continuous in [z,y] and differentiable in (x,y). Note that f’(t) = cost and
g'(t) = 1.
Using Cauchy’s Mean Value Theorem, we find ¢ € (z,y) such that.

(sinz —siny) = (z —y)cosc.

Since cosc < 1,
|sinz —siny| < |z — yl.

This proves our claim. O



