MA 1101 : Mathematics I

Satvik Saha, 19MS154

October 27, 2019

Solution 1.

- (i) Let $S \subseteq \mathbb{R}$ be a finite set with $n \in \mathbb{N}$ elements. We claim that S has no limit points. We enumerate the elements of S as x_1, x_2, \ldots, x_n . Let $a \in \mathbb{R}$.
 - (a) If a ∉ S, let us choose |x_i a| > ε_i > 0, for all i = 1, 2, ..., n. We set A_i = (a ε_i, a + ε_i) to be the ε_i neighbourhood of a. If x_i > a, we have x_i = a + (x_i a) > a + ε_i, and if x_i < a, we have x_i = a (a x_i) < a ε_i. Thus, x_i ∉ A_i.
 We set A = ∩ A_i. Since A is the intersection of a finite number of open intervals, A is also

an open interval.

Thus, $x_i \notin A$ for all $x_i \in S$, i.e. $S \cap A = \emptyset$. Thus, there is no $x \in S$ within the $\epsilon = \min \epsilon_i > 0$ neighbourhood of a. Hence, a is not a limit point.

(b) If a ∈ S, without loss of generality, we set a = x₁. We again choose |x_i - a| > ε_i > 0, for all i = 2, 3, ..., n. We set A_i = (a - ε_i, a + ε_i) to be the ε_i neighbourhood of a. Clearly, a = x₁ ∈ A₁. Arguing as before, x_i ∉ A_i for i = 2, 3, ..., n.
We set A = ∩ A_i. Thus, a = x₁ ∈ A and x_i ∉ A for i ≠ 1, i.e. S ∩ A = {a} Thus, the only x ∈ S within the ε = min ε_i neighbourhood of a is a. Hence, a is not a limit point.

Therefore, any finite set S has no limit points.

- (ii) Let $S = (0, \infty) \subseteq \mathbb{R}$. We claim that $[0, \infty)$ is the set of all limit points of S. Let $a \in \mathbb{R}$.
 - (a) If $a \in [0, \infty)$, let $\epsilon > 0$ be given. Thus, $a \ge 0 \Rightarrow a + \epsilon/2 > 0$, and $a \epsilon < a + \epsilon/2 < a + \epsilon$. Hence, we have found $x = a + \epsilon/2 \in S$ such that $x \in (a - \epsilon, a + \epsilon)$ and $x \ne a$. Thus, a is a limit point.
 - (b) If $a \notin [0, \infty)$, i.e. a < 0, we choose $\epsilon = -a$. Hence, $(a \epsilon, a + \epsilon) \cap S = (2a, 0) \cap (0, \infty) = \emptyset$. Thus, a is not a limit point.

This proves our claim.

- (iii) Let $S = [1, 2) \cup \{3\}$. We claim that [1, 2] is the set of all limit points of S. Let $a \in \mathbb{R}$.
 - (a) If $a \in [1,2)$, let $\epsilon > 0$ be given. We set $\epsilon' = \min\{\epsilon, a-1, 2-a\}$, and $x = a + \epsilon'/2$. Thus, $x > a \ge 1$ and $x < a + \epsilon' \le a + (2-a) = 2$. Also, $-\epsilon < \epsilon'/2 < \epsilon$. Hence, we have found $x \in (1,2) \subset S$ such that $x \in (a \epsilon, a + \epsilon)$ and $x \ne a$. Thus, a is a limit point.
 - (b) If $a \in \{2\}$, i.e. a = 2, let $\epsilon > 0$ be given. We set $\epsilon' = \min\{\epsilon, 1\}$, and $x = a \epsilon'/2$. Thus, $x > a \epsilon' \ge a 1 = 1$ and x < a = 2. Also, $-\epsilon < -\epsilon'/2 < \epsilon$. Hence, we have found $x \in (1, 2) \subset S$ such that $x \in (a \epsilon, a + \epsilon)$ and $x \neq a$. Thus, a is a limit point.
 - (c) If $a \in \{3\}$, i.e. a = 3, we choose $\epsilon = 1/2 > 0$. Hence, $(a \epsilon, a + \epsilon) \cap S = (2.5, 3.5) \cap ([1, 2) \cup \{3\}) = \{3\}$. Hence, $x \in S$ and $x \in (a \epsilon, a + \epsilon)$ forces x = a. Thus, a is not a limit point.
 - (d) If a < 1, we choose $\epsilon = 1 a$. Hence, $(a \epsilon, a + \epsilon) \cap S = (2a 1, 1) \cap ([1, 2) \cup \{3\}) = \emptyset$. Thus, a is not a limit point.
 - (e) If 2 < a < 3, we choose $\epsilon = \frac{1}{2} \min\{a 2, 3 a\}$. Thus, $a \epsilon > a 2\epsilon \ge a (a 2) = 2$ and $a + \epsilon < a + 2\epsilon \le a + (3 a) = 3$. Therefore, $(a \epsilon, a + \epsilon) \subset (2, 3)$. Hence, $(a \epsilon, a + \epsilon) \cap S = \emptyset$. Thus, a is not a limit point.
 - (f) If a > 3, we choose $\epsilon = a 3$. Hence, $(a \epsilon, a + \epsilon) \cap S = (3, 2a 3) \cap S = \emptyset$. Thus, a is not a limit point.

This proves our claim.

⁽iv) Let $S = [1,2) \cup (2,3)$. We claim that [1,3] is the set of all limit points of S. Let $a \in \mathbb{R}$.

(a) If $a \in (1,3)$, let $\epsilon > 0$ be given. We set $\epsilon' = \min\{\epsilon, a - 1, 3 - a\}$, and $x_- = a - \epsilon'/2$, $x^+ = a + \epsilon'/2$. Thus,

$$x_{-} > a - \epsilon' \ge a - (a - 1) = 1,$$

 $x_{-} < a \le 3,$
 $x_{+} > a \ge 1,$
 $x_{+} < a + \epsilon' \le a + (3 - a) = 3.$

Thus, $x_-, x_+ \in (1,3)$. Since $x_- < x_+$, at least one of them is $x \neq 2$. Also, $-\epsilon < -\epsilon'/2 < \epsilon'/2 < \epsilon$. Hence, we have found $x \in (1,3) \setminus \{2\} \subset S$ such that $x \in (a - \epsilon, a + \epsilon)$ and $x \neq a$. Thus, a is a limit point.

- (b) If $a \in \{1\}$, i.e. a = 1, let $\epsilon > 0$ be given. We set $\epsilon' = \min\{\epsilon, 1\}$, and $x = a + \epsilon'/2$. Thus, x > a = 1 and $x < a + \epsilon' \le a + 1 = 2$. Also, $-\epsilon < \epsilon'/2 < \epsilon$. Hence, we have found $x \in (1, 2) \subset S$ such that $x \in (a \epsilon, a + \epsilon)$ and $x \ne a$. Thus, a is a limit point.
- (c) If $a \in \{3\}$, i.e. a = 3, let $\epsilon > 0$ be given. We set $\epsilon' = \min\{\epsilon, 1\}$, and $x = a \epsilon'/2$. Thus, $x > a \epsilon' \ge a 1 = 1$ and x < a = 2. Also, $-\epsilon < -\epsilon'/2 < \epsilon$. Hence, we have found $x \in (2,3) \subset S$ such that $x \in (a \epsilon, a + \epsilon)$ and $x \neq a$. Thus, a is a limit point.
- (d) If a < 1, we choose $\epsilon = 1 a$. Hence, $(a \epsilon, a + \epsilon) \cap S = (2a 1, 1) \cap S = \emptyset$. Thus, a is not a limit point.
- (e) If a > 3, we choose $\epsilon = a 3$. Hence, $(a \epsilon, a + \epsilon) \cap S = (3, 2a 3) \cap S = \emptyset$. Thus, a is not a limit point.

This proves our claim.

- (v) Let $S = \{\frac{1}{n} : n \in \mathbb{N}\}$. We claim that 0 is the only limit point of S. Let $a \in \mathbb{R}$.
 - (a) If a = 0, let $\epsilon > 0$ be given. By the Archimedean Property of the reals, we choose $n \in \mathbb{N}$ such that $n\epsilon > 1$. Thus, $\frac{1}{n} \in S$ and $\frac{1}{n} \in (0 \epsilon, 0 + \epsilon)$. Thus, 0 is a limit point.
 - (b) If $a \ge 1$, we choose $\epsilon = a 1$. Thus, $(a \epsilon, a + \epsilon) \cap S = (1, 2a 1) \cap S = \emptyset$, since $S \subset (0, 1]$. Thus, a is not a limit point.
 - (c) If $a \in S \setminus \{1\}$, we find $n \in \mathbb{N}$ such that $a = \frac{1}{n}$. We choose $\frac{1}{n} \frac{1}{n+1} > \epsilon > 0$. Thus, $a \epsilon > \frac{1}{n+1}$ and $a + \epsilon = \frac{2}{n} \frac{1}{n+1} < \frac{1}{n-1}$, since $n^2 1 < n^2$. Hence, $S \cap (a \epsilon, a + \epsilon) = \{a\}$. Thus, a is not a limit point of S.
 - (d) If $a \in (0,1] \setminus S$, we find $n \in \mathbb{N}$ such that $\frac{1}{n+1} < a < \frac{1}{n}$. We choose $\min\{\frac{1}{n} a, a \frac{1}{n+1}\} > \epsilon > 0$. Thus, $a - \epsilon > a - (a - \frac{1}{n+1}) = \frac{1}{n+1}$ and $a + \epsilon < a + (\frac{1}{n} - a) = \frac{1}{n}$. Hence, $S \cap (a - \epsilon, a + \epsilon) = \emptyset$. Thus, a is not a limit point.
 - (e) If a < 0, we choose $\epsilon = -a$. Hence, $S \cap (a \epsilon, a + \epsilon) = S \cap (2a, 0) = \emptyset$.

Thus proves our claim.

- (vi) Let $S = \{\frac{1}{m} + \frac{1}{n} : m, n \in \mathbb{N}\}$. We claim that $\{0\} \cup \{\frac{1}{n} : n \in \mathbb{N}\}$ is the set of all limit points of S. Let $a \in \mathbb{R}, S' = \{\frac{1}{n} : n \in \mathbb{N}\}$.
 - (a) If a = 0, let $\epsilon > 0$ be given. We choose $n \in \mathbb{N}$ such that $n\epsilon > 2$. Thus, $\frac{2}{n} = \frac{1}{n} + \frac{1}{n} \in S$ and $\frac{1}{n} + \frac{1}{n} \in (0 \epsilon, 0 + \epsilon)$. Thus, 0 is a limit point.
 - (b) If $a \in S'$, let $\epsilon > 0$ be given. We find $n \in \mathbb{N}$ such that $a = \frac{1}{n}$. We choose $k \in \mathbb{N}$ such that $k\epsilon > 1$. Thus, $\frac{1}{n} + \frac{1}{k} \in S$ and $a < \frac{1}{n} + \frac{1}{k} < \frac{1}{n} + \epsilon$, so $\frac{1}{n} + \frac{1}{k} \in (a \epsilon, a + \epsilon)$. Thus, a is a limit point.
 - (c) If a ∉ S', a > 0, we choose an ε > 0 such that S' ∩ (a − ε, a + ε) = Ø. We can do so since a is not a limit point of S'. Also, minimize ε such that a − ε > 0.
 Consider the elements x = ¹/_m + ¹/_n ∈ S ∩ (a − ε/2, a + ε/2), where m, n ∈ N. Without loss of generality, let m ≤ n. Thus,

$$a - \frac{\epsilon}{2} < \frac{1}{n} + \frac{1}{m} < a + \frac{\epsilon}{2}$$

Since $(a - \epsilon, a + \epsilon)$ has no element of the from $\frac{1}{k}$ where $k \in \mathbb{N}$,

$$\frac{1}{n} \le \frac{1}{m} \le a - \epsilon$$

Also,

$$a - \frac{\epsilon}{2} < \frac{1}{n} + \frac{1}{m} \le \frac{2}{m}$$

Thus,

$$\frac{1}{m} > \frac{1}{2}(a-\frac{\epsilon}{2})$$

This means that there are only a finite number of m. Also,

$$a - \frac{\epsilon}{2} < \frac{1}{n} + \frac{1}{m} < \frac{1}{n} + a - \epsilon$$
$$\frac{1}{n} > \frac{\epsilon}{2}$$

Thus, there are only a finite number of n. This means that there are a finite number of x. Hence, $S \cap (a - \epsilon/2, a + \epsilon/2)$ is a finite set. Hence, a is not a limit point.

(d) If a < 0, we choose $\epsilon = -a$. Hence, $S \cap (a - \epsilon, a + \epsilon) = S \cap (2a, 0) = \emptyset$.

This proves our claim.

Solution 2. Note that for any $x \in \mathbb{R}$, x is trivially a limit point of \mathbb{R} , since every $\epsilon > 0$ neighbourhood of \mathbb{R} contains infinitely many real numbers other than x. In addition, removing a finite number of points from \mathbb{R} means that x is still a limit point of \mathbb{R} .

(i) We have $f : \mathbb{R} \to \mathbb{R}$, $f(x) := \lfloor x \rfloor$. We claim that $\lim_{x \to 0} f(x)$ does not exist. Suppose not, i.e. $\lim_{x \to 0} f(x) = L$. We find δ such that

$$0 < |x - 0| < \delta \implies |f(x) - L| < \frac{1}{4}$$

We choose $0 < x_0 < \min\{1, \delta\}$. Thus, $f(x_0) - f(-x_0) = 1$. Now,

$$1 = |f(x_0) - f(-x_0)|$$

= $|(f(x_0) - L) - (f(-x_0) - L)|$
 $\leq |f(x_0) - L| + |f(-x_0) - L|$
 $< \frac{1}{4} + \frac{1}{4}$
 $= \frac{1}{2}$

This is a contradiction, thus proving our claim.

- (ii) We have $f : \mathbb{R} \to \mathbb{R}$, $f(x) := \lfloor x \rfloor \lfloor x/3 \rfloor$. We claim that $\lim_{x \to 0} f(x) = 0$. Let $\epsilon > 0$ be given. We set $\delta = \frac{1}{2}$. Then, for all $x \in \mathbb{R}$ satisfying $0 < |x - 0| < \delta$, we have $|\lfloor x \rfloor - \lfloor x/3 \rfloor - 0| = 0 < \epsilon$ This proves our claim.
- (iii) We have $f : \mathbb{R} \setminus \{2\} \to \mathbb{R}$, $f(x) = \frac{x^3 8}{x 2}$. We claim that $\lim_{x \to 2} f(x) = 12$. Let $\epsilon > 0$ be given. We set $\delta = \min\{1, \epsilon/7\}$.

Then, for all $x \in \mathbb{R} \setminus \{2\}$ satisfying $0 < |x - 2| < \delta$, we have

$$\frac{x^3 - 8}{x - 2} - 12 \bigg| = |x^2 + 2x + 4 - 12|$$

= $|x^2 + 2x - 8|$
= $|(x - 2)(x + 4)|$
= $|x - 2| |x - 2 + 6|$
 $\leq |x - 2| (|x - 2| + 6)$
 $< \delta(\delta + 6)$
 $\leq \frac{\epsilon}{7}(1 + 6)$
= ϵ

This proves our claim.

- (iv) We have $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$, $f(x) := x \sin \frac{1}{x}$. We claim that $\lim_{x \to 0} f(x) = 0$. Let $\epsilon > 0$ be given. We set $\delta = \epsilon$. Then, for all $x \in \mathbb{R} \setminus \{0\}$ satisfying $0 < |x - 0| < \delta$, we have $|x \sin \frac{1}{x}| \le |x| < \epsilon$ This proves our claim.
- (v) We have $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}$, f(x) := x/|x|. We claim that $\lim_{x\to 0} f(x)$ does not exist. Suppose not, i.e. $\lim_{x\to 0} f(x) = L$. We find δ such that

$$0 < |x - 0| < \delta \implies |f(x) - L| < \frac{1}{2}$$

Note that f(x) - f(-x) = 2. Thus,

$$2 = |f(\delta/2) - f(-\delta/2)| = |(f(\delta/2) - L) - (f(-\delta/2) - L)| \leq |f(\delta/2) - L| + |f(-\delta/2) - L| < \frac{1}{2} + \frac{1}{2} = 1$$

This is a contradiction, thus proving our claim.

Solution 3. Let $\emptyset \neq D \subseteq \mathbb{R}$, $f, g: D \to R$ and let a be a limit point of D. Let $\lim_{x\to a} \operatorname{and} \lim_{x\to a} g(x)$ exist. We write

$$\lim_{x \to a} f(x) := L, \qquad \lim_{x \to a} g(x) := M.$$

(i) We claim that $\lim_{x\to a} (f(x) + g(x)) = L + M$. Let $\epsilon > 0$ be given. We find δ_f, δ_g such that for all $x \in D$,

$$0 < |x - a| < \delta_f \implies |f(x) - L| < \epsilon/2,$$

$$0 < |x - a| < \delta_g \implies |g(x) - M| < \epsilon/2.$$

We set $\delta = \min\{\delta_f, \delta_g\}$. Then, for all $x \in D$ satisfying $0 < |x - a| < \delta$, we have

$$\begin{aligned} |(f(x) + g(x)) - (L + M)| &= |(f(x) - L) + (g(x) - M)| \\ &\leq |f(x) - L| + |g(x) - M| \\ &< \epsilon/2 + \epsilon/2 \\ &= \epsilon \end{aligned}$$

This proves our claim.

(ii) We claim that for all $\alpha \in \mathbb{R}$, $\lim_{x \to a} (\alpha f(x)) = \alpha L$. Let $\epsilon > 0$ be given. If $\alpha \neq 0$, we find δ_f such that for all $x \in D$,

$$0 < |x - a| < \delta_f \implies |f(x) - L| < \epsilon/|\alpha|.$$

We set $\delta = \delta_f$. Then, for all $x \in D$ satisfying $0 < |x - a| < \delta$, we have

$$\begin{aligned} |\alpha f(x) - \alpha L| &= |\alpha| |f(x) - L| \\ &< |\alpha| \frac{\epsilon}{|\alpha|} \\ &= \epsilon \end{aligned}$$

If $\alpha = 0$, we trivially have

$$0 < |x - a| < \delta = \epsilon \implies |\alpha f(x) - \alpha L| = 0 < \epsilon.$$

This proves our claim.

(iii) We claim that $\lim_{x\to a} f(x)g(x) = LM$. To prove this, we first show that $\lim_{x\to a} (f(x) - L)(g(x) - M) = 0$.

Let $\epsilon > 0$ be given. We find δ_f, δ_g such that for all $x \in D$,

$$0 < |x - a| < \delta_f \implies |f(x) - L| < \sqrt{\epsilon},$$
$$0 < |x - a| < \delta_q \implies |g(x) - M| < \sqrt{\epsilon}.$$

We set $\delta = \min\{\delta_f, \delta_g\}$. Then, for all $x \in D$ satisfying $0 < |x - a| < \delta$, we have

$$|(f(x) - L)(g(x) - M) - 0| = |f(x) - L||g(x) - M|$$

$$< \sqrt{\epsilon}\sqrt{\epsilon}$$

$$= \epsilon$$

Thus, $\lim_{x \to a} (f(x) - L)(g(x) - M) = 0.$

We now show that for a constant function $h: D \to \mathbb{R}$, h(x) = k, we have $\lim_{x \to a} h(x) = k$. Let $\epsilon > 0$ be given. We set $\delta = \epsilon$. Then, for all $x \in D$ satisfying $0 < |x - a| < \delta$, we have $|h(x) - k| = 0 < \epsilon$.

Therefore,

$$\begin{array}{ll} 0 &=& \lim_{x \to a} (f(x) - L)(g(x) - M) \\ &=& \lim_{x \to a} (f(x)g(x) - Lg(x) - Mf(x) + LM) \\ &=& \lim_{x \to a} f(x)g(x) - \lim_{x \to a} Lg(x) - \lim_{x \to a} Mf(x) + \lim_{x \to a} LM \\ &=& \lim_{x \to a} f(x)g(x) - L \lim_{x \to a} g(x) - M \lim_{x \to a} f(x) + LM \\ &=& \lim_{x \to a} f(x)g(x) - LM - ML + LM \\ &=& \lim_{x \to a} f(x)g(x) - LM \end{array}$$

$$\lim_{x \to a} f(x)g(x) = LM$$

(iv) We claim that if $M \neq 0$, $\lim_{x \to a} f(x)/g(x) = L/M$. To prove this, we first show that $\lim_{x \to a} 1/g(x) = 1/M$.

Let $\epsilon > 0$ be given. We find δ_1, δ_2 such that for all $x \in D$,

$$0 < |x - a| < \delta_1 \implies |g(x) - M| < \frac{1}{2}|M|,$$

$$0 < |x - a| < \delta_2 \implies |g(x) - M| < \frac{1}{2}\epsilon|M|^2.$$

We set $\delta = \min{\{\delta_1, \delta_2\}}$. Then, for all $x \in D$ satisfying $0 < |x - a| < \delta$, we have

$$\begin{aligned} \frac{1}{2}|M| &> |g(x) - M| \\ &\geq ||g(x)| - |M|| \\ &\geq |M| - |g(x)| \\ &|g(x)| &> \frac{1}{2}|M| > 0 \\ &\frac{1}{|g(x)|} &< \frac{2}{|M|} \\ \left|\frac{1}{|g(x)|} - \frac{1}{M}\right| &= \frac{|g(x) - M|}{|Mg(x)|} \\ &= |g(x) - M| \frac{1}{|M||g(x)|} \\ &< \frac{1}{2}\epsilon |M|^2 \frac{2}{|M|^2} \\ &= \epsilon \end{aligned}$$

Thus, $\lim_{x\to a} 1/g(x) = 1/M$. Therefore,

$$\lim_{x \to a} f(x)g(x) = \lim_{x \to a} f(x)\frac{1}{g(x)}$$
$$= \lim_{x \to a} f(x) \lim_{x \to a} \frac{1}{g(x)}$$
$$= \frac{L}{M}$$