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Solution 1.

(i) Let S C R be a finite set with n € N elements. We claim that S has no limit points. We enumerate
the elements of S as x1,x2,...,2,. Let a € R.

(a) If a ¢ S, let us choose |z; —a| >¢; >0, forall i =1,2,...,n. Weset A; = (a —€;,a+¢;) to
be the ¢; neighbourhood of a. If x; > a, we have z; = a + (z; —a) > a+¢;, and if x; < a, we
have z; = a — (a — x;) < a — ¢;. Thus, x; ¢ A;.

We set A =[] A;. Since A is the intersection of a finite number of open intervals, A is also
an open interval.

Thus, x; ¢ A for all z; € S, i.e. SN A =0. Thus, there is no z € S within the ¢ = mine; > 0
neighbourhood of a. Hence, a is not a limit point.

(b) If a € S, without loss of generality, we set a = x;. We again choose |x; — a| > ¢ > 0, for
all i = 2,3,....,n. Weset A; = (a — €;,a + ¢;) to be the ¢ neighbourhood of a. Clearly,
a =1 € A;. Arguing as before, x; ¢ A; fori =2,3,... n.

We set A =()A;. Thus, a =1 € Aand x; ¢ A fori # 1, i.e. SN A= {a} Thus, the only
x € S within the € = min ¢; neighbourhood of a is a. Hence, a is not a limit point.

Therefore, any finite set S has no limit points. O
(ii) Let S = (0,00) C R. We claim that [0, 00) is the set of all limit points of S. Let a € R.

(a) If a € [0,00), let € > 0 be given. Thus, a > 0=a+¢/2>0,anda—€e<a+¢€/2 <a+e.
Hence, we have found z = a 4 ¢/2 € S such that € (a — ¢,a + €) and = # a. Thus, a is a
limit point.

(b) If a ¢ [0,00), i.e. a < 0, we choose ¢ = —a. Hence, (a —€,a+¢€) NS = (2a,0) N (0,00) = 0.
Thus, a is not a limit point.

This proves our claim. O
(iii) Let S =[1,2) U{3}. We claim that [1,2] is the set of all limit points of S. Let a € R.

(a) If a € [1,2), let € > 0 be given. We set ¢ = min{e,a — 1,2 — a}, and x = a + €¢//2. Thus,
x>a>landzr <a+é <a+(2—a) =2 Also, —¢ < €/2 < e. Hence, we have found
x € (1,2) C S such that € (a —€,a+¢€) and  # a. Thus, a is a limit point.

(b) If a € {2}, i.e. a =2, let € > 0 be given. We set ¢ = min{e, 1}, and z = a — ¢//2. Thus,
x>a—€¢ >a—1=1and z < a =2. Also, —e < —¢’/2 < e. Hence, we have found
x € (1,2) C S such that = € (a — ¢,a + €) and = # a. Thus, a is a limit point.

(c) Ifa € {3},i.e. a =3, wechoosee =1/2 > 0. Hence, (a—e¢, a+e)NS = (2.5,3.5)N([1,2)U{3}) =
{3}. Hence, x € S and = € (a — €,a + €) forces = a. Thus, a is not a limit point.

(d) If a < 1, we choose € = 1 —a. Hence, (a —€,a+€)NS = (2a—1,1)N([1,2) U{3}) = 0. Thus,
a is not a limit point.

(e) If 2 < a < 3, we choose € = + min{a — 2,3 — a}. Thus,a —e >a—2e>a— (a—2) =2 and
a+e<a+2e<a+(3—a)=3. Therefore, (a —€,a+¢€) C (2,3). Hence, (a—€,a+¢)NS = 0.
Thus, a is not a limit point.

(f) If a > 3, we choose € = a — 3. Hence, (a —€,a+¢)NS =(3,2a—3)NS = 0. Thus, a is not a
limit point.

This proves our claim. O

(iv) Let S =11,2) U(2,3). We claim that [1, 3] is the set of all limit points of S. Let a € R.



(a) If a € (1,3), let € > 0 be given. We set ¢ = min{e,a — 1,3 —a}, and z_ = a — €'/2,
xt =a+ € /2. Thus,
z->a—€¢ >a—(a—1)=1,
r_<a<3,
Ty >a>1,
i <a+€é <a+(3—a)=3.

Thus, z_,z4 € (1,3). Since z_ < x, at least one of them is z # 2. Also, —e < —€'/2 <
€’/2 < e. Hence, we have found z € (1,3) \ {2} C S such that z € (a — ¢,a + €) and x # a.
Thus, a is a limit point.

(b) If a € {1}, i.e. a =1, let € > 0 be given. We set ¢ = min{e, 1}, and z = a + ¢ /2. Thus,
z>a=1landz <a+¢€ <a+1=2 Also, —¢ < ¢/2 < e. Hence, we have found
x € (1,2) C S such that = € (a — €,a + €) and = # a. Thus, a is a limit point.

(c) If a € {3}, i.e. a =3, let € > 0 be given. We set ¢ = min{e, 1}, and x = a — €/ /2. Thus,
x>a—€¢ >a—1=1and z < a =2. Also, —¢ < —¢’/2 < e. Hence, we have found
x € (2,3) C S such that z € (a — €,a + €) and = # a. Thus, a is a limit point.

(d) If a < 1, we choose e =1 —a. Hence, (a —€,a+¢€)NS =(2a—1,1)NS = 0. Thus, a is not a
limit point.

(e) If a > 3, we choose € = a — 3. Hence, (a —€,a+¢)NS =(3,2a—3)NS =0. Thus, a is not a
limit point.

This proves our claim. O
(v) Let S ={X :n € N}. We claim that 0 is the only limit point of S. Let a € R.

(a) If a =0, let € > 0 be given. By the Archimedean Property of the reals, we choose n € N such
that ne > 1. Thus, % € S and % € (0 —¢€,0+¢). Thus, 0 is a limit point.

(b) If @ > 1, we choose € = a — 1. Thus, (a —e,a+¢) NS =(1,2a —1)NS =0, since S C (0, 1].

Thus, a is not a limit point.
_1 1 1 1
(c) If a € S\ {1}, we find n € N such that a = ;. We choose ;; — =5 > ¢ >0. Thus,a—e> 15
and a4 €= 2 — =5 < L5, since n® — 1 < n?. Hence, SN (a —€,a+¢€) = {a}. Thus, a is
not a limit point of S.

(d) Ifa € (0,1]\S, we find n € N such that n%rl < a < L. We choose min{%—a,a—%ﬂ} >e>0.
Thus, a —€ > a—(a— %ﬂ) = %ﬂ and a+e<a+(:—a)=1 Hence, SN(a—e€,a+e)=0.
Thus, a is not a limit point.

(e) If a < 0, we choose € = —a. Hence, SN (a—¢€,a+¢)=S5N(2a,0) = 0.

Thus proves our claim. O

(vi) Let S ={L +1:m,n e N} We claim that {0} U {2 : n € N} is the set of all limit points of .
Let a € R, 8" = {1 :n e N}

(a) If a =0, let € > 0 be given. We choose n € N such that ne > 2. Thus, % = % + % € S and
L4+ 1ec(0—¢0+e¢). Thus, 0 is a limit point.

(b) If a € S', let € > 0 be given. We find n € N such that a = L. We choose k € N such that
ke > 1. Thus, %+%65anda< %—&—% < %—Fe, SO%—&—% € (a —¢,a+¢). Thus, a is a limit
point.

(c) Ifa ¢ S’',a >0, we choose an € > 0 such that S’ N (a — €,a + €) = 0. We can do so since a is
not a limit point of S’. Also, minimize € such that a — e > 0.

Consider the elements z = L + 1 € S (a — €/2,a + €/2), where m,n € N. Without loss of
generality, let m < n. Thus,

€ €

1 1
<-4+ =<a+
n. m

“73 2
Since (a — €,a + €) has no element of the from + where k € N,
1 1
—<—<a-—c¢
n-m



Also,

€ 1 1 2
a—=-<—+—< —
2 n o m m
Thus,
1 1 €
m 2%

This means that there are only a finite number of m. Also,
€

2

1 1 1
o—-<—-—+—<—-+a—c¢
n.om n

1 €

n 2
Thus, there are only a finite number of n. This means that there are a finite number of z.

Hence, SN (a —€/2,a+ €/2) is a finite set. Hence, a is not a limit point.
(d) If a < 0, we choose € = —a. Hence, SN (a —€,a+¢€) =5N(2a,0) = 0.

This proves our claim. O

Solution 2. Note that for any = € R, z is trivially a limit point of R, since every ¢ > 0 neighbourhood
of R contains infinitely many real numbers other than z. In addition, removing a finite number of points
from R means that x is still a limit point of R.

(i)

(iii)

We have f: R = R, f(z):= |z]|. We claim that lim,_,o f(2) does not exist.
Suppose not, i.e. lim,_o f(x) = L. We find § such that
1
O<|zr—0]<d = |f(x)—L| < 1
We choose 0 < g < min{1,46}. Thus, f(xzg) — f(—zo) = 1. Now,

1= |f($0) —f(—$0)|

|(f($0) -L)- (f(—fﬁo) - L)|
|f(zo) — LI + | f(=z0) — L]

1 1

171

1

2
This is a contradiction, thus proving our claim. O
We have f: R —» R, f(x):= |z] — |z/3]. We claim that lim,_,o f(z) = 0.
Let € > 0 be given. We set § = %
Then, for all z € R satisfying 0 < | — 0] < J, we have ||z| — [2/3| — 0] = 0 < € This proves our
claim. O
We have f: R\ {2} = R, f(z) = '23:28. We claim that lim,_,5 f(z) = 12.
Let € > 0 be given. We set § = min{1,¢/7}.
Then, for all z € R\ {2} satisfying 0 < |z — 2| < §, we have

IN

A

3 _
° 8—u‘=\ﬁ+ax+4—u|
xz—2
= |1‘2—|—2x—8|
= [(z =2)(z +4)|
= |z —2||z -2+ 6|
< |z =2|(Jz - 2[+6)
< §(6+6)
€
< —(1+6
< S(+0)
=€
This proves our claim. O



(iv) We have f: R\ {0} = R, f(z) := xsin 1. We claim that lim,_,o f(z) = 0.
Let € > 0 be given. We set § = e.
Then, for all z € R\ {0} satisfying 0 < |z — 0| < §, we have |zsin 1| < |z| < € This proves our
claim. O
(v) We have f: R\ {0} = R, f(z) := z/|z|. We claim that lim,_,o f(2) does not exist.
Suppose not, i.e. lim,_o f(x) = L. We find § such that

1
O0<|z-0]<éd = |f(:E)—L|<§

Note that f(z) — f(—x) = 2. Thus,

2 = [£(5/2) - F(=5/2)
= |(£(5/2) ~ L) - (f(~5/2) - L)|

< |f(6/2) = LI+ [f(=0/2) — L|
_11
2 2
=1
This is a contradiction, thus proving our claim. O

Solution 3. Let ) # D C R, f,g: D — R and let a be a limit point of D. Let lim,_,, and lim,_,, g(x)
exist. We write

lim f(x):=L, lim g(x) := M.

z—a z—a

(i) We claim that lim,_,,(f(x) +g(z)) = L+ M.
Let € > 0 be given. We find 47,4 such that for all z € D,

0<|z—al<dy = |f(z)—L| <e/2,
0<l|z—al<d, = |g(xz)— M| <e/2.
We set § = min{dy,dy}. Then, for all € D satisfying 0 < |z — a| < §, we have
[(f(z) +g(x)) = (L + M)| = |(f(z) = L) + (9(x) = M)
|[f(x) = L[ + [g(x) — M]|
€/2+¢/2

= €

<
<

This proves our claim. O

(ii) We claim that for all @ € R, lim,_,,(af(x)) = aL.
Let € > 0 be given. If a # 0, we find 6 such that for all z € D,

O<|z—a|l<dy = |f(x)—L| <€/l
We set 6 = dy. Then, for all x € D satisfying 0 < |z — a| < §, we have

laf(z) —aL| = |af|f(z) - L]
< Ja|—
o]

= €

If @ = 0, we trivially have

O<|lz—al|<d=e¢ = |af(z)—all=0<e.

This proves our claim. O



(iii) We claim that lim,_,, f(x)g(z) = LM. To prove this, we first show that lim, ,,(f(x) — L)(g(z) —

M) = 0.

Let € > 0 be given. We find 7,4 such that for all z € D,

0<|r—al <6 = |f(x)~L| < Ve,

0<|z—al<dy = |g(z) — M| < Ve

We set 6 = min{ds,d,}. Then, for all x € D satisfying 0 < |z — a| < 6, we have

|(f(z) = L)(g(x) — M) - O]

|f(x) — Llg(x) — M]|
Veve

€

N

Thus, lim, . (f(z) — L)(g(x) — M) = 0.

We now show that for a constant function h: D — R, h(z) = k, we have lim,_,, h(z) = k.

Let € > 0 be given. We set § = €. Then, for all z € D satisfying 0 < | — a|] < §, we have

|h(z) — k| = 0<e.

Therefore,

r—a

lim f(2)g(z) — lim Lg(x) — lim M f(z) + lim LM
lim f(z)g(x) — L lim g(z) — M lim f(z) + LM
lim f(z)g(x) — LM — ML+ LM

r—a

lim f(z)g(z) — LM

O

(iv) We claim that if M # 0, lim,_,, f(x)/g(x) = L/M. To prove this, we first show that lim,_,, 1/g(z) =

1/M.

Let € > 0 be given. We find 41, §2 such that for all x € D,

1
0<lz—al <o = lg(z) - M| < 5[M],

1
O0<|z—a|l<d = |g(x)—M|<§e|M|2.



We set 0 = min{dq,d2}. Then, for all © € D satisfying 0 < |z — a| < , we have

1
LM > lgtw) - 1)
> lg(z)| — [M]|
> M| —|g(z)|
1
@) > 1M1 0
L2
lg(x)]  [M]
’1_1‘ _ lol@) — M|
g(x) M [Mg()|
1
— — M —_—
9 = M gGa)
1,02
=€
Thus, lim,,, 1/g(z) = 1/M. Therefore,
I _ 1
liy J(e) = i f(o)
. . 1
= lim f(z) lm =5
_ L
M



