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Solution 1.

(i) Let S ⊆ R be a finite set with n ∈ N elements. We claim that S has no limit points. We enumerate
the elements of S as x1, x2, . . . , xn. Let a ∈ R.

(a) If a /∈ S, let us choose |xi − a| > ϵi > 0, for all i = 1, 2, . . . , n. We set Ai = (a− ϵi, a+ ϵi) to
be the ϵi neighbourhood of a. If xi > a, we have xi = a+ (xi − a) > a+ ϵi, and if xi < a, we
have xi = a− (a− xi) < a− ϵi. Thus, xi /∈ Ai.
We set A =

∩
Ai. Since A is the intersection of a finite number of open intervals, A is also

an open interval.
Thus, xi /∈ A for all xi ∈ S, i.e. S ∩A = ∅. Thus, there is no x ∈ S within the ϵ = min ϵi > 0
neighbourhood of a. Hence, a is not a limit point.

(b) If a ∈ S, without loss of generality, we set a = x1. We again choose |xi − a| > ϵi > 0, for
all i = 2, 3, . . . , n. We set Ai = (a − ϵi, a + ϵi) to be the ϵi neighbourhood of a. Clearly,
a = x1 ∈ A1. Arguing as before, xi /∈ Ai for i = 2, 3, . . . , n.
We set A =

∩
Ai. Thus, a = x1 ∈ A and xi /∈ A for i ̸= 1, i.e. S ∩ A = {a} Thus, the only

x ∈ S within the ϵ = min ϵi neighbourhood of a is a. Hence, a is not a limit point.

Therefore, any finite set S has no limit points.

(ii) Let S = (0,∞) ⊆ R. We claim that [0,∞) is the set of all limit points of S. Let a ∈ R.

(a) If a ∈ [0,∞), let ϵ > 0 be given. Thus, a ≥ 0 ⇒ a + ϵ/2 > 0, and a − ϵ < a + ϵ/2 < a + ϵ.
Hence, we have found x = a + ϵ/2 ∈ S such that x ∈ (a − ϵ, a + ϵ) and x ̸= a. Thus, a is a
limit point.

(b) If a /∈ [0,∞), i.e. a < 0, we choose ϵ = −a. Hence, (a − ϵ, a + ϵ) ∩ S = (2a, 0) ∩ (0,∞) = ∅.
Thus, a is not a limit point.

This proves our claim.

(iii) Let S = [1, 2) ∪ {3}. We claim that [1, 2] is the set of all limit points of S. Let a ∈ R.

(a) If a ∈ [1, 2), let ϵ > 0 be given. We set ϵ′ = min{ϵ, a − 1, 2 − a}, and x = a + ϵ′/2. Thus,
x > a ≥ 1 and x < a + ϵ′ ≤ a + (2 − a) = 2. Also, −ϵ < ϵ′/2 < ϵ. Hence, we have found
x ∈ (1, 2) ⊂ S such that x ∈ (a− ϵ, a+ ϵ) and x ̸= a. Thus, a is a limit point.

(b) If a ∈ {2}, i.e. a = 2, let ϵ > 0 be given. We set ϵ′ = min{ϵ, 1}, and x = a − ϵ′/2. Thus,
x > a − ϵ′ ≥ a − 1 = 1 and x < a = 2. Also, −ϵ < −ϵ′/2 < ϵ. Hence, we have found
x ∈ (1, 2) ⊂ S such that x ∈ (a− ϵ, a+ ϵ) and x ̸= a. Thus, a is a limit point.

(c) If a ∈ {3}, i.e. a = 3, we choose ϵ = 1/2 > 0. Hence, (a−ϵ, a+ϵ)∩S = (2.5, 3.5)∩([1, 2)∪{3}) =
{3}. Hence, x ∈ S and x ∈ (a− ϵ, a+ ϵ) forces x = a. Thus, a is not a limit point.

(d) If a < 1, we choose ϵ = 1− a. Hence, (a− ϵ, a+ ϵ)∩S = (2a− 1, 1)∩ ([1, 2)∪ {3}) = ∅. Thus,
a is not a limit point.

(e) If 2 < a < 3, we choose ϵ = 1
2 min{a− 2, 3− a}. Thus, a− ϵ > a− 2ϵ ≥ a− (a− 2) = 2 and

a+ ϵ < a+2ϵ ≤ a+(3−a) = 3. Therefore, (a− ϵ, a+ ϵ) ⊂ (2, 3). Hence, (a− ϵ, a+ ϵ)∩S = ∅.
Thus, a is not a limit point.

(f) If a > 3, we choose ϵ = a− 3. Hence, (a− ϵ, a+ ϵ)∩ S = (3, 2a− 3)∩ S = ∅. Thus, a is not a
limit point.

This proves our claim.

(iv) Let S = [1, 2) ∪ (2, 3). We claim that [1, 3] is the set of all limit points of S. Let a ∈ R.
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(a) If a ∈ (1, 3), let ϵ > 0 be given. We set ϵ′ = min{ϵ, a − 1, 3 − a}, and x− = a − ϵ′/2,
x+ = a+ ϵ′/2. Thus,

x− > a− ϵ′ ≥ a− (a− 1) = 1,

x− < a ≤ 3,

x+ > a ≥ 1,

x+ < a+ ϵ′ ≤ a+ (3− a) = 3.

Thus, x−, x+ ∈ (1, 3). Since x− < x+, at least one of them is x ≠ 2. Also, −ϵ < −ϵ′/2 <
ϵ′/2 < ϵ. Hence, we have found x ∈ (1, 3) \ {2} ⊂ S such that x ∈ (a − ϵ, a + ϵ) and x ̸= a.
Thus, a is a limit point.

(b) If a ∈ {1}, i.e. a = 1, let ϵ > 0 be given. We set ϵ′ = min{ϵ, 1}, and x = a + ϵ′/2. Thus,
x > a = 1 and x < a + ϵ′ ≤ a + 1 = 2. Also, −ϵ < ϵ′/2 < ϵ. Hence, we have found
x ∈ (1, 2) ⊂ S such that x ∈ (a− ϵ, a+ ϵ) and x ̸= a. Thus, a is a limit point.

(c) If a ∈ {3}, i.e. a = 3, let ϵ > 0 be given. We set ϵ′ = min{ϵ, 1}, and x = a − ϵ′/2. Thus,
x > a − ϵ′ ≥ a − 1 = 1 and x < a = 2. Also, −ϵ < −ϵ′/2 < ϵ. Hence, we have found
x ∈ (2, 3) ⊂ S such that x ∈ (a− ϵ, a+ ϵ) and x ̸= a. Thus, a is a limit point.

(d) If a < 1, we choose ϵ = 1− a. Hence, (a− ϵ, a+ ϵ)∩ S = (2a− 1, 1)∩ S = ∅. Thus, a is not a
limit point.

(e) If a > 3, we choose ϵ = a− 3. Hence, (a− ϵ, a+ ϵ)∩ S = (3, 2a− 3)∩ S = ∅. Thus, a is not a
limit point.

This proves our claim.

(v) Let S = { 1
n : n ∈ N}. We claim that 0 is the only limit point of S. Let a ∈ R.

(a) If a = 0, let ϵ > 0 be given. By the Archimedean Property of the reals, we choose n ∈ N such
that nϵ > 1. Thus, 1

n ∈ S and 1
n ∈ (0− ϵ, 0 + ϵ). Thus, 0 is a limit point.

(b) If a ≥ 1, we choose ϵ = a− 1. Thus, (a− ϵ, a+ ϵ) ∩ S = (1, 2a− 1) ∩ S = ∅, since S ⊂ (0, 1].
Thus, a is not a limit point.

(c) If a ∈ S \{1}, we find n ∈ N such that a = 1
n . We choose 1

n − 1
n+1 > ϵ > 0. Thus, a− ϵ > 1

n+1

and a + ϵ = 2
n − 1

n+1 < 1
n−1 , since n2 − 1 < n2. Hence, S ∩ (a − ϵ, a + ϵ) = {a}. Thus, a is

not a limit point of S.
(d) If a ∈ (0, 1]\S, we find n ∈ N such that 1

n+1 < a < 1
n . We choose min{ 1

n−a, a− 1
n+1} > ϵ > 0.

Thus, a− ϵ > a− (a− 1
n+1 ) =

1
n+1 and a+ ϵ < a+( 1n − a) = 1

n . Hence, S ∩ (a− ϵ, a+ ϵ) = ∅.
Thus, a is not a limit point.

(e) If a < 0, we choose ϵ = −a. Hence, S ∩ (a− ϵ, a+ ϵ) = S ∩ (2a, 0) = ∅.

Thus proves our claim.

(vi) Let S = { 1
m + 1

n : m,n ∈ N}. We claim that {0} ∪ { 1
n : n ∈ N} is the set of all limit points of S.

Let a ∈ R, S′ = { 1
n : n ∈ N}.

(a) If a = 0, let ϵ > 0 be given. We choose n ∈ N such that nϵ > 2. Thus, 2
n = 1

n + 1
n ∈ S and

1
n + 1

n ∈ (0− ϵ, 0 + ϵ). Thus, 0 is a limit point.
(b) If a ∈ S′, let ϵ > 0 be given. We find n ∈ N such that a = 1

n . We choose k ∈ N such that
kϵ > 1. Thus, 1

n + 1
k ∈ S and a < 1

n + 1
k < 1

n + ϵ, so 1
n + 1

k ∈ (a− ϵ, a+ ϵ). Thus, a is a limit
point.

(c) If a /∈ S′, a > 0, we choose an ϵ > 0 such that S′ ∩ (a− ϵ, a+ ϵ) = ∅. We can do so since a is
not a limit point of S′. Also, minimize ϵ such that a− ϵ > 0.
Consider the elements x = 1

m + 1
n ∈ S ∩ (a − ϵ/2, a + ϵ/2), where m,n ∈ N. Without loss of

generality, let m ≤ n. Thus,
a− ϵ

2
<

1

n
+

1

m
< a+

ϵ

2

Since (a− ϵ, a+ ϵ) has no element of the from 1
k where k ∈ N,

1

n
≤ 1

m
≤ a− ϵ
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Also,
a− ϵ

2
<

1

n
+

1

m
≤ 2

m
Thus,

1

m
>

1

2
(a− ϵ

2
)

This means that there are only a finite number of m. Also,

a− ϵ

2
<

1

n
+

1

m
<

1

n
+ a− ϵ

1

n
>

ϵ

2
Thus, there are only a finite number of n. This means that there are a finite number of x.
Hence, S ∩ (a− ϵ/2, a+ ϵ/2) is a finite set. Hence, a is not a limit point.

(d) If a < 0, we choose ϵ = −a. Hence, S ∩ (a− ϵ, a+ ϵ) = S ∩ (2a, 0) = ∅.

This proves our claim.

Solution 2. Note that for any x ∈ R, x is trivially a limit point of R, since every ϵ > 0 neighbourhood
of R contains infinitely many real numbers other than x. In addition, removing a finite number of points
from R means that x is still a limit point of R.

(i) We have f : R → R, f(x) := ⌊x⌋. We claim that limx→0 f(x) does not exist.
Suppose not, i.e. limx→0 f(x) = L. We find δ such that

0 < |x− 0| < δ =⇒ |f(x)− L| < 1

4

We choose 0 < x0 < min{1, δ}. Thus, f(x0)− f(−x0) = 1. Now,

1 = |f(x0)− f(−x0)|
= |(f(x0)− L)− (f(−x0)− L)|
≤ |f(x0)− L|+ |f(−x0)− L|

<
1

4
+

1

4

=
1

2

This is a contradiction, thus proving our claim.

(ii) We have f : R → R, f(x) := ⌊x⌋ − ⌊x/3⌋. We claim that limx→0 f(x) = 0.
Let ϵ > 0 be given. We set δ = 1

2 .
Then, for all x ∈ R satisfying 0 < |x − 0| < δ, we have |⌊x⌋ − ⌊x/3⌋ − 0| = 0 < ϵ This proves our
claim.

(iii) We have f : R \ {2} → R, f(x) = x3−8
x−2 . We claim that limx→2 f(x) = 12.

Let ϵ > 0 be given. We set δ = min{1, ϵ/7}.
Then, for all x ∈ R \ {2} satisfying 0 < |x− 2| < δ, we have∣∣∣∣x3 − 8

x− 2
− 12

∣∣∣∣ =
∣∣x2 + 2x+ 4− 12

∣∣
=

∣∣x2 + 2x− 8
∣∣

= |(x− 2)(x+ 4)|
= |x− 2| |x− 2 + 6|
≤ |x− 2| (|x− 2|+ 6)

< δ(δ + 6)

≤ ϵ

7
(1 + 6)

= ϵ

This proves our claim.
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(iv) We have f : R \ {0} → R, f(x) := x sin 1
x . We claim that limx→0 f(x) = 0.

Let ϵ > 0 be given. We set δ = ϵ.
Then, for all x ∈ R \ {0} satisfying 0 < |x − 0| < δ, we have

∣∣x sin 1
x

∣∣ ≤ |x| < ϵ This proves our
claim.

(v) We have f : R \ {0} → R, f(x) := x/|x|. We claim that limx→0 f(x) does not exist.
Suppose not, i.e. limx→0 f(x) = L. We find δ such that

0 < |x− 0| < δ =⇒ |f(x)− L| < 1

2

Note that f(x)− f(−x) = 2. Thus,

2 = |f(δ/2)− f(−δ/2)|
= |(f(δ/2)− L)− (f(−δ/2)− L)|
≤ |f(δ/2)− L|+ |f(−δ/2)− L|

<
1

2
+

1

2
= 1

This is a contradiction, thus proving our claim.

Solution 3. Let ∅ ̸= D ⊆ R, f, g : D → R and let a be a limit point of D. Let limx→a and limx→a g(x)
exist. We write

lim
x→a

f(x) := L, lim
x→a

g(x) := M.

(i) We claim that limx→a(f(x) + g(x)) = L+M .
Let ϵ > 0 be given. We find δf , δg such that for all x ∈ D,

0 < |x− a| < δf =⇒ |f(x)− L| < ϵ/2,

0 < |x− a| < δg =⇒ |g(x)−M | < ϵ/2.

We set δ = min{δf , δg}. Then, for all x ∈ D satisfying 0 < |x− a| < δ, we have

|(f(x) + g(x))− (L+M)| = |(f(x)− L) + (g(x)−M)|
≤ |f(x)− L|+ |g(x)−M |
< ϵ/2 + ϵ/2

= ϵ

This proves our claim.

(ii) We claim that for all α ∈ R, limx→a(αf(x)) = αL.
Let ϵ > 0 be given. If α ̸= 0, we find δf such that for all x ∈ D,

0 < |x− a| < δf =⇒ |f(x)− L| < ϵ/|α|.

We set δ = δf . Then, for all x ∈ D satisfying 0 < |x− a| < δ, we have

|αf(x)− αL| = |α||f(x)− L|

< |α| ϵ

|α|
= ϵ

If α = 0, we trivially have

0 < |x− a| < δ = ϵ =⇒ |αf(x)− αL| = 0 < ϵ.

This proves our claim.
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(iii) We claim that limx→a f(x)g(x) = LM . To prove this, we first show that limx→a(f(x)−L)(g(x)−
M) = 0.
Let ϵ > 0 be given. We find δf , δg such that for all x ∈ D,

0 < |x− a| < δf =⇒ |f(x)− L| <
√
ϵ,

0 < |x− a| < δg =⇒ |g(x)−M | <
√
ϵ.

We set δ = min{δf , δg}. Then, for all x ∈ D satisfying 0 < |x− a| < δ, we have

|(f(x)− L)(g(x)−M)− 0| = |f(x)− L||g(x)−M |
<

√
ϵ
√
ϵ

= ϵ

Thus, limx→a(f(x)− L)(g(x)−M) = 0.

We now show that for a constant function h : D → R, h(x) = k, we have limx→a h(x) = k.
Let ϵ > 0 be given. We set δ = ϵ. Then, for all x ∈ D satisfying 0 < |x − a| < δ, we have
|h(x)− k| = 0 < ϵ.

Therefore,

0 = lim
x→a

(f(x)− L)(g(x)−M)

= lim
x→a

(f(x)g(x)− Lg(x)−Mf(x) + LM)

= lim
x→a

f(x)g(x)− lim
x→a

Lg(x)− lim
x→a

Mf(x) + lim
x→a

LM

= lim
x→a

f(x)g(x)− L lim
x→a

g(x)−M lim
x→a

f(x) + LM

= lim
x→a

f(x)g(x)− LM −ML+ LM

= lim
x→a

f(x)g(x)− LM

lim
x→a

f(x)g(x) = LM

(iv) We claim that if M ≠ 0, limx→a f(x)/g(x) = L/M . To prove this, we first show that limx→a 1/g(x) =
1/M .
Let ϵ > 0 be given. We find δ1, δ2 such that for all x ∈ D,

0 < |x− a| < δ1 =⇒ |g(x)−M | < 1

2
|M |,

0 < |x− a| < δ2 =⇒ |g(x)−M | < 1

2
ϵ|M |2.
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We set δ = min{δ1, δ2}. Then, for all x ∈ D satisfying 0 < |x− a| < δ, we have

1

2
|M | > |g(x)−M |

≥ ||g(x)| − |M ||
≥ |M | − |g(x)|

|g(x)| >
1

2
|M | > 0

1

|g(x)|
<

2

|M |∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ =
|g(x)−M |
|Mg(x)|

= |g(x)−M | 1

|M ||g(x)|

<
1

2
ϵ|M |2 2

|M |2

= ϵ

Thus, limx→a 1/g(x) = 1/M . Therefore,

lim
x→a

f(x)g(x) = lim
x→a

f(x)
1

g(x)

= lim
x→a

f(x) lim
x→a

1

g(x)

=
L

M
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