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1 Integers
Theorem 1.1. Define a relation ∼Z on N× N as

(m,n) ∼Z (p, q) if m+ q = n+ p.

Then, ∼Z is an equivalence relation on N× N.

Proof. For an arbitrary (m,n) ∈ N× N, clearly (m,n) ∼Z (m,n), hence ∼Z is reflexive.
Again, for arbitrary (m,n), (p, q) ∈ N × N, if (m,n) ∼Z (p, q), we have m + q = n + p. By the

commutativity of addition on natural numbers, p+n = q+m, so (p, q) ∼Z (m,n), hence ∼Z is symmetric.
For (m,n), (p, q), (r, s) ∈ N × N, if (m,n) ∼Z (p, q) and (p, q) ∼Z (r, s), we have m + q = n + p and

p+ s = q + r. Thus, m+ q + p+ s = n+ p+ q + r, so m+ s = n+ r. Thus, (m,n) ∼Z (r, s), hence ∼Z
is transitive.

Therefore, ∼Z is an equivalence relation on N× N.

Notation. Let us set
Z := (N× N)/ ∼Z,

Z+ := {[(n+ 1, 1)] : n ∈ N}, 0̄ := [(1, 1)], 1̄ := [(2, 1)].

Definition (Addition). For a = [(m,n)], b = [(p, q)] ∈ Z, we define

a+ b := [(m+ p, n+ q)].

Theorem 1.2. Addition (+) is well-defined, associative and commutative.

Proof. First, we show that + is well-defined. Let a = [(m,n)] = [(m′, n′)], b = [(p, q)] = [(p′, q′)] ∈ Z.
We claim that a+ b = [(m+ p, n+ q)] = [(m′ + p′, n′ + q′)], i.e. (m+ p, n+ q) ∼Z (m′ + p′, n′ + q′), i.e
m + p + n′ + q′ = n + q +m′ + p′. Now, (m,n) ∼Z (m′, n′) and (p, q) ∼Z (p′, q′), from which we have
m+ n′ = n+m′ and p+ q′ = q + p′. Adding these gives the desired result.

For a, b, c ∈ Z, let a = [(m,n)], b = [(p, q)], c = [(r, s)]. From the associativity of addition in N,

(a+ b) + c = [(m+ p, n+ q)] + [(r, s)]

= [((m+ p) + r, (n+ q) + s)]

= [(m+ (p+ r), n+ (q + s))]

= [(m,n)] + [(p+ r, q + s)]

= a+ (b+ c)

Therefore, + is associative.
From the commutativity of addition in N,

a+ b = [(m+ p, n+ q)]

= [(p+m, q + n)]

= b+ a

Therefore, + is commutative.

Lemma 1.3. For all m,n, k ∈ N, [(m,n)] = [(m+ k, n+ k)] ∈ Z.

Proof. It is sufficient to show that (m,n) ∼Z (m+k, n+k), i.e. m+n+k = n+m+k, which is certainly
true.
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Lemma 1.4. For all n ∈ N, [(n, n)] = 0̄.

Proof. It is sufficient to show that (n, n) ∼Z (1, 1), i.e. n+ 1 = n+ 1, which is certainly true.

Theorem 1.5. For all a ∈ Z, 0̄ + a = a = a+ 0̄.

Proof. Let a = [(m,n)] ∈ Z.

a+ 0̄ = [(m,n)] + [(1, 1)]

= [(m+ 1, n+ 1)]

= [(m,n)]

= a

a+ 0̄ = a = 0̄ + a

Theorem 1.6. For all a ∈ Z, there exists a unique x ∈ Z, satisfying a+ x = 0̄ = x+ a.

Proof. For a = [(m,n)] ∈ Z, construct x = [(n,m)] ∈ Z. Clearly, a + x = [(m + n, n +m)] = 0̄. From
commutativity of +, a+ x = 0̄ = x+ a.

We now show that x is unique. Let x′ ∈ Z, a+ x′ = 0̄ = x′ + a.

a+ x′ = 0̄

x+ (a+ x′) = x+ 0̄

(x+ a) + x′ = x

0̄ + x′ = x

x′ = x

Notation. We denote x as −a and say that −a is the negative of a.

Corollary 1.6.1. If a = [(m,n)] ∈ Z, then −a = [(n,m)].

Notation. For a, b ∈ Z, we write
a− b := a+ (−b).

Theorem 1.7. For all a, b ∈ Z, there exists a unique x ∈ Z satisfying a+ x = b.

Proof. From the well-defined nature of +, there exists a unique x = b− a = b+ (−a) ∈ Z.

a+ x = a+ (b+ (−a))

= a+ ((−a) + b)

= (a+ (−a)) + b

= 0̄ + b

= b

Let x′ ∈ Z, a+ x′ = b.

a+ x′ = b

x+ (a+ x′) = x+ b

(x+ a) + x′ = x+ b

b+ x′ = b+ x

x′ = x

Definition (Multiplication). For a = [(m,n)], b = [(p, q)] ∈ Z, we define

a · b := [(mp+ nq,mq + np)].

Theorem 1.8. Multiplication (·) is well-defined, associative and commutative.
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Proof. First, we show that · is well-defined. Let a = [(m,n)] = [(m′, n′)], b = [(p, q)] = [(p′, q′)] ∈ Z.
We claim that a · b = [(mp + nq,mq + np)] = [(m′p′ + n′q′,m′q′ + n′p′)], i.e. (mp + nq,mq + np) ∼Z
(m′p′ + n′q′,m′q′ + n′p′).

From (p, q) ∼Z (p′, q′),

p+ q′ = q + p′

mp+mq′ = mq +mp′

np+ nq′ = nq + np′

mp+ nq +mq′ + np′ = mq + np+mp′ + nq′

(mp+ nq,mq + np) ∼Z (mp′ + nq′,mq′ + np′)

From (m,n) ∼Z (m′, n′),

m+ n′ = n+m′

mp′ + n′p′ = np′ +m′p′

mq′ + n′q′ = nq′ +m′q′

mp′ + nq′ +m′q′ + n′p′ = mq′ + np′ +m′p′ + n′q′

(mp′ + nq′,mq′ + np′) ∼Z (m′p′ + n′q′,m′q′ + n′p′)

Transitivity of ∼Z yields the desired result.
For a, b, c ∈ Z, let a = [(m,n)], b = [(p, q)], c = [(r, s)].

(a · b) · c = [(mp+ nq,mq + np)] · [(r, s)]
= [((mp+ nq)r + (mq + np)s, (mp+ nq)s+ (mq + np)r)]

= [(mpr + nqr +mqs+ nps,mps+ nqs+mqr + npr)]

a · (b · c) = [(m,n)] · [(pr + qs, ps+ qr)]

= [(m(pr + qs) + n(ps+ qr),m(ps+ qr) + n(pr + qs))]

= [(mpr +mqs+ nps+ nqr,mps+mqr + npr + nqs)]

Therefore, (a · b) · c = a · (b · c), i.e. · is associative.

a · b = [(mp+ nq,mq + np)]

= [(pm+ qn, pn+ qm)]

= b · a

Therefore, · is commutative.

Theorem 1.9. For all a ∈ Z, a · 1̄ = a = 1̄ · a.

Proof. Let a = [(m,n)] ∈ Z.

a · 1̄ = [(m,n)] · [(2, 1)]
= [(2m+ n,m+ 2n)]

= [(m+ (m+ n), (m+ n) + n)]

= [(m,n)]

= a

a · 1̄ = a = 1̄ · a

Theorem 1.10. For all a ∈ Z, a · 0̄ = 0̄ = 0̄ · a.

Proof. Let a = [(m,n)] ∈ Z.

a · 0̄ = [(m,n)] · [(1, 1)]
= [(m+ n,m+ n)]

= 0̄

a · 0̄ = 0̄ = 0̄ · a
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Theorem 1.11 (Distributivity). For all a, b, c ∈ Z, a · (b+ c) = a · b+ a · c.

Proof. For a, b, c ∈ Z, let a = [(m,n)], b = [(p, q)], c = [(r, s)].

a · (b+ c) = [(m,n)] · [(p+ r, q + s)]

= [(m(p+ r) + n(q + s),m(q + s) + n(p+ r))]

= [(mp+mr + nq + ns,mq +ms+ np+ nr)]

= [(mp+ nq,mq + np)] + [(mr + ns,ms+ nr)]

= a · b+ a · c

Theorem 1.12. For all a, b ∈ Z, (−a) · b = −(a · b).

Proof.

(−a) · b+ a · b = ((−a) + a) · b
= 0̄ · b
= 0̄

(−a) · b = −(a · b)

Theorem 1.13. For all a, b ∈ Z, (−a) · (−b) = a · b.

Proof.

(−a) · (−b) + (−(a · b)) = (−a) · (−b) + (−a) · b
= (−a) · ((−b) + b)

= (−a) · 0̄
= 0̄

(−a) · (−b) = a · b

Lemma 1.14. If a = [(m,n)] ∈ Z, a ̸= 0̄, then m ̸= n.

Proof. Assume that m = n. Then, we have (m,n) ∼Z 0̄, contradicting our premise. Hence, we must
have m ̸= n.

Theorem 1.15 (No zero divisors). For all a, b ∈ Z with a, b ̸= 0̄, we have a · b ̸= 0̄.

Proof. Let a = [(m,n)], b = [(p, q)] ∈ Z. Note that m ̸= n, p ̸= n, since a, b ̸= 0̄.
Assume that our theorem is false, i.e. a ·b = 0̄. Then [(mp+nq,mq+np)] = 0̄ ⇒ mp+nq = mq+np.

One of the following must be true.
Case I: If m > n, there exists u ∈ N, such that m = n+ u. Thus, (n+ u)p+ nq = (n+ u)q + np ⇒

np+ up+ nq = nq + uq + np. This implies that up = uq ⇒ p = q, contradicting p ̸= q.
Case II: If n > m, there exists v ∈ N, such that n = m+v. Thus, mp+(m+v)q = mq+(m+v)p ⇒

mp+mq + vq = mq +mp+ vp. This implies that vp = vq ⇒ p = q, contradicting p ̸= q.
Hence, a · b ̸= 0̄.

Corollary 1.15.1. For all a, b ∈ Z, if a · b = 0̄, then a = 0̄ or b = 0̄.

Theorem 1.16 (Cancellation). For a, b, c ∈ Z with a ̸= 0̄, we have a · b = a · c ⇒ b = c.

Proof. For a, b, c ∈ Z, let a = [(m,n)], b = [(p, q)], c = [(r, s)]. We have m ̸= n.

a · b = a · c
[(mp+ nq,mq + np)] = [(mr + ns,ms+ nr)]

mp+ nq +ms+ nr = mq + np+mr + ns

m(p+ s) + n(q + r) = m(q + r) + n(p+ s)

Assume that our theorem is false. Thus, b ̸= c, i.e. b + (−c) = [(p + s, q + r)] ̸= 0̄ ⇒ p + s ̸= q + r.
Without loss of generality, let p+ s > q + r, i.e. p+ s = q + r + x for some x ∈ N.

Thus, m(q+ r+x)+n(q+ r) = m(q+ r)+n(q+ r+x). This implies that mx = nx ⇒ m = n, which
contradicts m ̸= n.

Hence, b = c.

4



Definition (Order). For all a, b ∈ Z, we say that a > b if a− b ∈ Z+.

Lemma 1.17. If m,n ∈ N, m > n, i.e. m = n+ x for x ∈ N, then a = [(m,n)] ∈ Z+.

Proof. We must show that a = [(n + x, n)] ∈ Z+, i.e. for some k ∈ N, (n + x, n) ∼Z (k + 1, 1), i.e.
n+ x+ 1 = n+ k + 1. This is clearly true for k = x.

Theorem 1.18. For all a, b ∈ Z, we have a · b > 0̄ if a, b > 0̄ or a, b < 0̄.

Proof. If a, b > 0̄, then a, b ∈ Z+. Thus, a = [(m+ 1, 1)] and b = [(n+ 1, 1)] for some m,n ∈ N.

a · b = [((m+ 1)(n+ 1) + (1)(1), (m+ 1)1 + 1(n+ 1))]

= [(mn+m+ n+ 1 + 1,m+ 1 + n+ 1)]

= [((m+ n+ 2) +mn, (m+ n+ 2))] ∈ Z+

Therefore, a · b > 0̄.
If a, b < 0̄, then 0̄− a, 0̄− b ∈ Z+, i.e. −a,−b > 0̄. Therefore, (−a) · (−b) > 0̄ =⇒ a · b > 0̄

Definition (Identification map). Define IN : N → Z by

IN(n) := [(n+ 1, 1)], for all n ∈ N.

Theorem 1.19. IN is injective.

Proof. Let m,n ∈ N.

IN(m) = IN(n)

[(m+ 1, 1)] = [(n+ 1, 1)]

(m+ 1, 1) ∼Z (n+ 1, 1)

m+ 1 + 1 = n+ 1 + 1

m = n

Hence, IN is injective.

Theorem 1.20. IN(N) = Z+.

Proof. We first show that IN(N) ⊆ Z+. Let x ∈ IN(N). Thus, there exists at least one k ∈ N such that
x = IN(k) = [(k + 1, 1)], which implies that x ∈ Z+ by definition.

Next, we show that Z+ ⊆ IN(N). Let x ∈ Z+. By definition, x = [(k+1, 1)] for some k ∈ N. Clearly,
x = IN(k) ∈ IN(N).

Hence, we conclude that IN(N) = Z+.

Theorem 1.21. IN(1) = 1̄.

Proof.
IN(1) = [(1 + 1, 1)] = [(2, 1)] = 1̄

Theorem 1.22. For all m,n ∈ N, IN(m+ n) = IN(m) + IN(n).

Proof.

IN(m) + IN(n) = [(m+ 1, 1)] + [(n+ 1, 1)]

= [(m+ 1 + n+ 1, 1 + 1)]

= [((m+ n) + 1, 1)]

= IN(m+ n)

Theorem 1.23. For all m,n ∈ N, IN(m · n) = IN(m) · IN(n).

Proof.

IN(m) · IN(n) = [(m+ 1, 1)] · [(n+ 1, 1)]

= [((m+ 1)(n+ 1) + (1)(1), (m+ 1)1 + 1(n+ 1))]

= [(mn+m+ n+ 1 + 1,m+ n+ 1 + 1)]

= [(mn+ 1, 1)]

= IN(m · n)
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Theorem 1.24. For all m,n ∈ N with m > n, IN(m) > IN(n).

Proof.

IN(m)− IN(n) = [(m+ 1, 1)] + (−[(n+ 1, 1)])

= [(m+ 1, 1)] + [(1, n+ 1)]

= [(m+ 1 + 1, 1 + n+ 1)]

= [(m,n)].

From 1.17, [(m,n)] ∈ Z+. Therefore, IN(m)− IN(n) ∈ Z+ =⇒ IN(m) > IN(n), as desired.

Identification
For all n ∈ N, we shall identify IN(n) with n. With this identification,

0 ↔ 0̄

1 ↔ 1̄

N = Z+ ⊂ Z

Z = {n : n ∈ N } ∪ {−n : n ∈ N } ∪ { 0̄ }

2 Rationals
Theorem 2.1. Define a relation ∼Q on Z× (Z \ {0})) as

(m,n) ∼Q (p, q) if mq = np.

Then, ∼Q is an equivalence relation on Z× (Z \ {0})).

Proof. For an arbitrary (m,n) ∈ Z× (Z \ {0}), clearly (m,n) ∼Q (m,n), hence ∼Q is reflexive.
Again, for arbitrary (m,n), (p, q) ∈ Z × (Z \ {0}), if (m,n) ∼Q (p, q), we have mq = np. By the

commutativity of multiplication on integers, pn = qm, so (p, q) ∼Q (m,n), hence ∼Q is symmetric.
For (m,n), (p, q), (r, s) ∈ Z× (Z \ {0}), if (m,n) ∼Q (p, q) and (p, q) ∼Q (r, s), we have mq = np and

ps = qr. Thus, mqps = npqr, so ms = nr. Thus, (m,n) ∼Q (r, s), hence ∼Q is transitive.
Therefore, ∼Q is an equivalence relation on Z× (Z \ {0})).

Notation. Let us set
Q := (Z× (Z \ {0}))/ ∼Q,

0̄ := [(0, 1)], 1̄ := [(1, 1)].

Definition (Addition). For a = [(m,n)], b = [(p, q)] ∈ Q, we define

a+ b := [(mq + np, nq)].

Theorem 2.2. Addition (+) is well-defined, associative and commutative.

Proof. First, we show that + is well-defined. Let a = [(m,n)] = [(m′, n′)], b = [(p, q)] = [(p′, q′)] ∈ Q.
Now, (m,n) ∼Q (m′, n′) and (p, q) ∼Q (p′, q′), from which we have mn′ = m′n and pq′ = p′q. We claim

a+ b = [(mq + np, nq)] = [(m′q′ + n′p′, n′q′)]

(mq + np)(n′q′) = (m′q′ + n′p′)(nq)

mn′qq′ + nn′pq′ = m′nqq′ + nn′p′q

qq′(mn′ −m′n) = nn′(p′q − pq′)

qq′(0) = nn′(0)

which is clearly true.
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For a, b, c ∈ Z, let a = [(m,n)], b = [(p, q)], c = [(r, s)].

(a+ b) + c = [(mq + np, nq)] + [(r, s)]

= [((mq + np)s+ nq(r), nqs)]

= [(mqs+ nps+ nqr, nqs)]

= [(m)qs+ n(ps+ qr), nqs]

= [(m,n)] + [(ps+ qr, qs)]

= a+ (b+ c)

Therefore, + is associative.

a+ b = [(mq + np, nq)]

= [(pn+ qm, qn)]

= b+ a

Therefore, + is commutative.

Lemma 2.3. For all (m,n) ∈ Z× (Z \ {0}), k ∈ Z \ {0}, [(m,n)] = [(mk, nk)] ∈ Q.

Proof. It is sufficient to show that (m,n) ∼Q (mk, nk), i.e. mnk = nmk, which is certainly true.

Lemma 2.4. For all n ∈ Z \ {0}, [(n, n)] = 1̄.

Proof. It is sufficient to show that (n, n) ∼Q (1, 1), i.e. n · 1 = n · 1, which is certainly true.

Theorem 2.5. For all a ∈ Q, 0̄ + a = a = a+ 0̄.

Proof. Let a = [(m,n)] ∈ Q.

a+ 0̄ = [(m,n)] + [(0, 1)]

= [(m · 1 + n · 0, n · 1)]
= [(m,n)]

= a

a+ 0̄ = a = 0̄ + a

Theorem 2.6. For all a ∈ Q, there exists a unique x ∈ Q, satisfying a+ x = 0̄ = x+ a.

Proof. For a = [(m,n)] ∈ Q, construct x = [(−m,n)] ∈ Q. Clearly, a + x = [(mn + n(−m), nn)] = 0̄.
From commutativity of +, a+ x = 0̄ = x+ a.

We now show that x is unique. Let x′ ∈ Q, a+ x′ = 0̄ = x′ + a.

a+ x′ = 0̄

x+ (a+ x′) = x+ 0̄

(x+ a) + x′ = x

0̄ + x′ = x

x′ = x

Notation. We denote x as −a and say that −a is the negative of a.

Corollary 2.6.1. If a = [(m,n)] ∈ Q, then −a = [(−m,n)].

Notation. For a, b ∈ Q, we write
a− b := a+ (−b).

Theorem 2.7. For all a, b ∈ Q, there exists a unique x ∈ Q satisfying a+ x = b.
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Proof. From the well-defined nature of +, there exists a unique x = b− a = b+ (−a) ∈ Q.

a+ x = a+ (b+ (−a))

= a+ ((−a) + b)

= (a+ (−a)) + b

= 0̄ + b

= b

Let x′ ∈ Q, a+ x′ = b.

a+ x′ = b

x+ (a+ x′) = x+ b

(x+ a) + x′ = x+ b

b+ x′ = b+ x

−b+ (b+ x′) = −b+ (b+ x)

(−b+ b) + x′ = (−b+ b) + x

0̄ + x′ = 0̄ + x

x′ = x

Definition (Multiplication). For a = [(m,n)], b = [(p, q)] ∈ Q, we define

a · b := [(mp, nq)].

Theorem 2.8. Multiplication (·) is well-defined, associative and commutative.

Proof. First, we show that · is well-defined. Let a = [(m,n)] = [(m′, n′)], b = [(p, q)] = [(p′, q′)] ∈ Q.
Now, (m,n) ∼Q (m′, n′) and (p, q) ∼Q (p′, q′), from which we have mn′ = m′n and pq′ = p′q. We claim

a · b = [(mp, nq)] = [(m′p′, n′q′)]

(mp)(n′q′) = (nq)(m′p′)

(mn′)(pq′) = (m′n)(p′q)

which is clearly true.
For a, b, c ∈ Z, let a = [(m,n)], b = [(p, q)], c = [(r, s)].

(a · b) · c = [(mp, nq)] · [(r, s)]
= [((mp)r, (nq)s)]

= [(mpr, nqs)]

a · (b · c) = [(m,n)] · [(pr, qs)]
= [(m(pr), n(qs))]

= [(mpr, nqs)]

Therefore, (a · b) · c = a · (b · c), i.e. · is associative.

a · b = [(mp, nq)]

= [(pm, qn)]

= b · a

Therefore, · is commutative.

Theorem 2.9. For all a ∈ Q, a · 1̄ = a = 1̄ · a.

Proof. Let a = [(m,n)] ∈ Q.

a · 1̄ = [(m,n)] · [(q, 1)]
= [(m · 1, n · 1)]
= [(m,n)]

= a

a · 1̄ = a = 1̄ · a
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Theorem 2.10. For all a ∈ Z, a · 0̄ = 0̄ = 0̄ · a.

Proof. Let a = [(m,n)] ∈ Q.

a · 0̄ = [(m,n)] · [(0, 1)]
= [(m · 0, n)]
= 0̄

a · 0̄ = 0̄ = 0̄ · a

Theorem 2.11. For all a ∈ Q \ {0̄}, there exists a unique x ∈ Q satisfying a · x = 1̄ = x · a.

Proof. For a = [(m,n)] ∈ Q \ {0̄}, construct x = [(n,m)] ∈ Q. Clearly, a · x = [(mn,nm)] = 1̄. From
commutativity of ·, a · x = 1̄ = x · a.

We now show that x is unique. Let x′ ∈ Q, a · x′ = 1̄ = x′ · a.

a · x′ = 1̄

x · (a · x′) = x · 1̄
(x · a) · x′ = x

1̄ · x′ = x

x′ = x

Notation. We denote x as a−1 and say that a−1 is the inverse of a.

Theorem 2.12. For all a, b ∈ Q \ {0̄}, there exists a unique x ∈ Q satisfying a · x = b.

Proof. From the well-defined nature of ·, there exists a unique x = a−1 · b ∈ Q.

a · x = a · (a−1 · b)
= (a · a−1) · b
= 1̄ · b
= b

Let x′ ∈ Q, a · x′ = b.

a · x′ = b

x · (a · x′) = x · b
(x · a) · x′ = x · b

b · x′ = b · x
b−1 · (b · x′) = b−1 · (b · x)
(b−1 · b) · x′ = (b−1 · b) · x

1̄ · x′ = 1̄ · x
x′ = x

Theorem 2.13 (Distributivity). For all a, b, c ∈ Q, a · (b+ c) = a · b+ a · c.

Proof. For a, b, c ∈ Q, let a = [(m,n)], b = [(p, q)], c = [(r, s)].

a · (b+ c) = [(m,n)] · [(ps+ qr, qs)]

= [(m(ps+ qr), nqs)]

= [(mps+ nqr, nqs)]

a · b+ a · c = [(mp, nq)] + [(mr, ns)]

= [((mp)(ns) + (nq)(mr), (nq)(ns))]

= [(mnps+mnqr, nnqs)]

= [(n(mps+mqr), n(nqs))]

= [(mps+mqr, nqs)]

Hence, a · (b+ c) = a · b+ a · c.
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Theorem 2.14. For all a, b ∈ Q, (−a) · b = −(a · b).

Proof.

(−a) · b+ a · b = ((−a) + a) · b
= 0̄ · b
= 0̄

(−a) · b = −(a · b)

Theorem 2.15. For all a, b ∈ Q, (−a) · (−b) = a · b.

Proof.

(−a) · (−b) + (−(a · b)) = (−a) · (−b) + (−a) · b
= (−a) · ((−b) + b)

= (−a) · 0̄
= 0̄

(−a) · (−b) = a · b

Lemma 2.16. If a = [(m,n)] ∈ Q, a ̸= 0̄, then m ̸= 0.

Proof. Assume that m = 0. Then, we have (m,n) ∼Q 0̄, contradicting our premise. Hence, we must
have m ̸= 0.

Theorem 2.17 (No zero divisors). For all a, b ∈ Q with a, b ̸= 0̄, we have a · b ̸= 0̄.

Proof. Let a = [(m,n)], b = [(p, q)] ∈ Q. Note that m ̸= 0, p ̸= 0, since a, b ̸= 0̄.
Assume that our theorem is false, i.e. a · b = 0̄. Then [(mp, nq)] = 0̄ ⇒ mp = 0.
From 1.15.1, m = 0 or p = 0, which contradicts our premise.
Hence, a · b ̸= 0̄.

Corollary 2.17.1. For all a, b ∈ Q, if a · b = 0̄, then a = 0̄ or b = 0̄.

Theorem 2.18 (Cancellation). For a, b, c ∈ Q with a ̸= 0̄, we have a · b = a · c ⇒ b = c.

Proof.

a · b = a · c
a−1 · (a · b) = a−1 · (a · c)
(a−1 · a) · b = (a−1 · a) · c

b = c

Lemma 2.19. For all a = [(m,n)] ∈ Q, a = [(−m,−n)].

Proof. It is sufficient to show that (m,n) ∼Q (−m,−n), i.e. m(−n) = n(−m), which is certainly true.

Definition (Order). For all a = [(m,n)], b = [(p, q)] ∈ Q, n, q ∈ N, we say that a > b if mq > np.

Theorem 2.20. For all a, b ∈ Q, we have a · b > 0̄ if a, b > 0̄ or a, b < 0̄.

Proof. Let a = [(m,n)], b = [(p, q)] ∈ Q, n, q ∈ N. From n, q ∈ N = Z+ we have n > 0 and q > 0, so
nq > 0 ⇒ nq ∈ N.

If a, b > 0̄, then m > 0 and p > 0. Thus, mp > 0 which gives a · b = [(mp, nq)] > 0.
If a, b < 0, then 0 > a and 0 > b so 0 > m and 0 > p. Thus, −m,−n > 0, so (−m)(−n) = mn > 0,

which gives a · b > 0.

Definition (Identification map). Define IZ : Z → Q by

IZ(n) := [(n, 1)], for all n ∈ Z.

Theorem 2.21. IZ is injective.
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Proof. Let m,n ∈ Z.

IZ(m) = IZ(n)

[(m, 1)] = [(n, 1)]

m · 1 = n · 1
m = n

Hence, IZ is injective.

Theorem 2.22. IZ(0) = 0̄.

Proof.
IZ(0) = [(0, 1)] = 0̄

Theorem 2.23. IZ(1) = 1̄.

Proof.
IZ(1) = [(1, 1)] = 1̄

Theorem 2.24. For all m,n ∈ Z, IZ(m+ n) = IZ(m) + IZ(n).

Proof.

IZ(m) + IZ(n) = [(m, 1)] + [(n, 1)]

= [(m · 1 + 1 · n, 1 · 1)]
= [(m+ n, 1)]

= IZ(m+ n)

Theorem 2.25. For all m,n ∈ Z, IZ(m · n) = IZ(m) · IZ(n).

Proof.

IZ(m) · IZ(n) = [(m, 1)] · [(n, 1)]
= [(m · n, 1 · 1)]
= [(mn, 1)]

= IZ(m · n)

Theorem 2.26. For all m,n ∈ Z with m > n, IZ(m) > IZ(n).

Proof. We claim IZ(m) > IZ(n), i.e. [(m, 1)] > [(n, 1)]. This is equivalent to m > n, which is true.

Identification
For all n ∈ Z, we shall identify IZ(n) with n. With this identification,

0 ↔ 0̄

1 ↔ 1̄

Z ⊂ Q
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