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1 Integers
Theorem 1.1. Define a relation ~z on N x N as

(m,n) ~z (p,q) if m+q=n+p.
Then, ~z is an equivalence relation on N x N,

Proof. For an arbitrary (m,n) € N x N| clearly (m,n) ~z (m,n), hence ~y is reflexive.

Again, for arbitrary (m,n),(p,q) € N x N, if (m,n) ~z (p,q), we have m + g = n + p. By the
commutativity of addition on natural numbers, p+n = g+m, so (p, q) ~z (m,n), hence ~y is symmetric.

For (m,n), (p,q),(r,s) € Nx N, if (m,n) ~z (p,q) and (p,q) ~z (r,s), we have m + g = n+ p and
p+s=q+r. Thus m+qg+p+s=n+p+q+r,som+s=n+r. Thus, (m,n)~z (r,s), hence ~z
is transitive.

Therefore, ~z is an equivalence relation on N x N. O

Notation. Let us set
Z := (NxN)/ ~yg,
7t = {l[(n+1,1)]:neN}, 0:=[(1,1)], 1:=[21)]
Definition (Addition). For a = [(m,n)], b =[(p,q)] € Z, we define
a+b = [(m+pn+q)
Theorem 1.2. Addition (+) is well-defined, associative and commutative.

Proof. First, we show that + is well-defined. Let a = [(m,n)] = [(m/,n)], b = [(p,q)] = [(¢’,¢)] € Z.
We claim that a +b=[(m +p,n+q)| =[(m' +p',n' + )], ie. (m+p,n+q) ~z (m +p,n +¢),ie
m+p+n +q¢d =n+qg+m' +p. Now, (m,n) ~z (m',n') and (p,q) ~z (p',¢'), from which we have
m+n'=n+m' and p+ ¢ = g+ p’. Adding these gives the desired result.

For a,b,c € Z, let a = [(m,n)],b = [(p,q)],c = [(r, s)]. From the associativity of addition in N,

[((m+p,n+q)] +[(r,5)]
= [((m+p)+r (n+q) +s)]
= [(m+(+7),n+(q+s))
= [(m,n)] +[(p+7,q+ 5)]
=a+(b+c¢)

(a+b)+c =

Therefore, + is associative.
From the commutativity of addition in N,

a+b = [(m+pn+q)
[(p+m,q+n)]
=b+a

Therefore, + is commutative. O
Lemma 1.3. For allm,n,k € N, [((m,n)] =[(m+k,n+k)] € Z.

Proof. Tt is sufficient to show that (m,n) ~z (m+k,n+k), i.e. m+n+k = n+m+k, which is certainly
true. 0



Lemma 1.4. For alln € N, [(n,n)] = 0.

Proof. 1t is sufficient to show that (n,n) ~z (1,1), i.e. n 4+ 1 =n+ 1, which is certainly true. O
Theorem 1.5. Foralla€Z,0+a=a=a+0.

Proof. Let a = [(m,n)] € Z.

a+0 = [(m,n)]+[(1,1)]
= [(m+1,n+1)]
= [(m,n)]
a+0 ; a=0+a -

Theorem 1.6. For all a € 7, there exists a unique x € 7, satisfyinga+x =0=x + a.

Proof. For a = [(m,n)] € Z, construct x = [(n,m)] € Z. Clearly, a + x = [(m + n,n +m)] = 0. From
commutativity of +, a +z =0 =z + a.
We now show that z is unique. Let 2’ € Z, a+ 2’ =0 = 2’ + a.

a+z =0
r+(a+2) = 2+0
(x+a)+a = x
0O+2 ==
¥ = O
Notation. We denote x as —a and say that —a is the negative of a.
Corollary 1.6.1. If a = [(m,n)] € Z, then —a = [(n,m)].
Notation. For a,b € Z, we write
a—0b:= a+(-Db).
Theorem 1.7. For all a,b € Z, there exists a unique x € Z satisfying a + x = b.
Proof. From the well-defined nature of +, there exists a unique x =b—a=b+ (—a) € Z.
at+z = a+ (b+ (—a))
= 4t ((~a) +1)
= (a+ (~a) +0
=0+0
b
Let 2’ €Z,a+2 =0b.
at+a =b
r+(a+a') = z+b
(z+a)+2 = x+b
b+a = b+x
¥ =z O

Definition (Multiplication). For a = [(m,n)], b = [(p, q)] € Z, we define
a-b := [(mp+ng,mqg+ np).

Theorem 1.8. Multiplication (-) is well-defined, associative and commutative.



Proof. First, we show that - is well-defined. Let

(m/p/+n/q/’m/q/+n/p/).
From (p, q) ~z (p', '),
p+q
mp +mq
np + ng’
mp +ng +mq +np’
(mp + ng, mq + np)
From (m,n) ~z (m/,n’),
m-+n'
mp/ + n/p/
mq/ + n/q/
mp/ + nq/ + m/q/ + n/p/

a = [(m,n)]

q+p

mq +myp’

ng + np’

mq +np +mp +ng

~z (mp" 4+ nq',mq" + np")

=n+m

npl+m/p/

nq/+mlq/
mq/+np/+m/p/+nlq/

[(m/,n)], b= [(p,9)] = (. )] € Z.
We claim that a - b = [(mp + ng,mq + np)] = [(m'p’ + n'q’,m'¢’ + n'p’)], i.e. (mp+ ng, mqg+ np) ~z

2

(mp" +ng',mq +np') ~z (m'p +n'q,m'q’+n'p)

Transitivity of ~y yields the desired result.
For a,b,c € Z, let a = [(mvn)]v b= [(pa Q)]a c= [(Ta 5)]

(a-b)-c mp + ng, mq + np)] - [(r, s)]
(mp + ng)r + (mgq + np)s, (mp + nq)s + (mq + np)r)]

(
(
(mpr + ngr + mqs + nps, mps + ngs + mqr + npr)]
(
(
(

[
[
= [
[
[
[

a-(b-c) ;)] - [(pr + gs,ps + qr)]
(pr + qs) +n(ps + qr), m(ps + qr) + n(pr + gs))]

mpr + mqs + nps + ngr, mps + mqr + npr + ngs)]

m
m

Therefore, (a-b)-c=a- (b-¢), i.e. - is associative.

= [(mp + ng, mq + np)]
= [(pm + qn,pn + qm)]

b-a
Therefore, - is commutative. O
Theorem 1.9. Foralla€Z,a-1=a=1"a.
Proof. Let a = [(m,n)] € Z.
a-1 = [(m,n)]-[(2,1)]
= [(2m + n,m + 2n)]
= [(m+ (m+n), (m+n)+n)]
= [(m,n)]
=a
a-1=a=1-a O
Theorem 1.10. Foralla€Z,a-0=0=0-a.
Proof. Let a = [(m,n)] € Z.
a-0 = [(m,n)]-[(1,1)]
= [(m+n,m+n)]
=0
a-0=0=0-a O



Theorem 1.11 (Distributivity). For all a,b,c €Z, a-(b+c¢)=a-b+a-c.
Proof. For a,b,c € 7, let a = [(m,n)],b = [(p, ), ¢ = [(r, )]

a-(b+c) = [(mn)]-[(p+71q+s)]

= [(m(p+7)+n(g+s),m(g+s)+n(p+r))
[
[

(mp + mr + ng + ns, mq + ms + np + nr)]

(mp 4+ ng, mq + np)] + [(mr + ns, ms + nr)]
=a-b+a-c O

Theorem 1.12. For all a,b € Z, (—a) -b= —(a-b).

Proof.
(=a)-b+a-b = ((—a)+a)-b
=0-b
=0
(=a)-b = —(a-b) O

Theorem 1.13. For all a,b € Z, (—a) - (=b) =a-b.
Proof.

(=a)- (=b) + (=(a-b)) = (=a)-(
= (=a)-((=b) +b)
= (—a)-0
=0
(—a)-(=b) = a
Lemma 1.14. Ifa = [(m,n)] € Z, a # 0, then m # n.

Proof. Assume that m = n. Then, we have (m,n) ~z 0, contradicting our premise. Hence, we must
have m # n. O

Theorem 1.15 (No zero divisors). For all a,b € Z with a,b # 0, we have a - b # 0.

Proof. Let a = [(m,n)],b=[(p,q)] € Z. Note that m # n, p # n, since a,b # 0.

Assume that our theorem is false, i.e. a-b= 0. Then [(mp+ng, mqg+np)] =
One of the following must be true.

Case I: If m > n, there exists u € N, such that m =n + u. Thus, (n+u)p+ng=(n+u)g+np =
np + up + nqg = ng + uqg + np. This implies that up = uq = p = ¢, contradicting p # q.

Case II: If n > m, there exists v € N, such that n = m+wv. Thus, mp+ (m+v)qg = mg+ (m+v)p =
mp + mq + vqg = mq + mp + vp. This implies that vp = vqg = p = ¢, contradicting p # q.

Hence, a - b # 0. O

0 = mp+ng = mg+np.

Corollary 1.15.1. For alla,b€ Z, ifa-b=0, thena =0 or b= 0.
Theorem 1.16 (Cancellation). For a,b,c € Z with a # 0, we have a-b=a-c=b=c.

Proof. For a,b,c € Z, let a = [(m,n)],b = [(p,q)],c = [(r,s)]. We have m # n.

a-b=a-c
[(mp + ng,mq +np)] = [(mr + ns,ms + nr)]
mp+nqg+ms—+nr = mqg-+np+mr-+mns
m(p+s)+nlg+r) = mlg+7r)+n(p+s)

Assume that our theorem is false. Thus, b # ¢, i.e. b+ (—c) =[(p+s,q+7)] #A0=>p+s#q+r.
Without loss of generality, let p+ s> g+ r,i.e. p+s=q+r+ z for some x € N.

Thus, m(g+r+z)+n(g+r) = m(g+r)+n(g+r+z). This implies that ma = nx = m = n, which
contradicts m # n.

Hence, b = c. O



Definition (Order). For all a,b € Z, we say that a > bif a —b € ZT.
Lemma 1.17. If m,n €N, m >n, i.e. m=n-+x forx €N, then a = [(m,n)] € Z™.

Proof. We must show that a = [(n + z,n)] € Z*, i.e. for some k € N, (n +x,n) ~z (k+ 1,1), i.e.
n+x+1=n+k+ 1. This is clearly true for k = . O

Theorem 1.18. For all a,b € Z, we have a-b >0 ifa,b >0 or a,b < 0.
Proof. If a,b > 0, then a,b € Z*. Thus, a = [(m +1,1)] and b = [(n + 1,1)] for some m,n € N.
a-b=1[((m+D)n+1)+D)A),(m+1)1+1(n+1))]
= [(mn+m+n+1+1,m+14+n+1)
= [((m+n+2)+mn,(m+n+2)] ezt O

Therefore, a - b > 0.
Ifa,b <0, then 0 —a,0 —b€ Z", i.e. —a,—b > 0. Therefore, (—a)-(=b) >0 = a-b>0

Definition (Identification map). Define Iy: N — Z by
In(n) :== [(n+1,1)], forallmeN.
Theorem 1.19. Iy is injective.

Proof. Let m,n € N.

[(m+1,1)] = [(n+1,1)]
(m+1,1) ~z (n+1,1)
m+14+1 =n+1+1

Hence, Iy is injective. O
Theorem 1.20. Iy(N) =Z*.

Proof. We first show that Iy(N) C ZT. Let « € Iy(N). Thus, there exists at least one k € N such that
x = In(k) = [(k + 1,1)], which implies that x € Z™ by definition.

Next, we show that Z* C Iy(N). Let x € Z*. By definition, z = [(k+ 1,1)] for some k € N. Clearly,
x = In(k) € In(N).

Hence, we conclude that Iy(N) = Z*. O

Theorem 1.21. Iy(1) =1.

Proof.
() =[1+1,D]=[2D] =1 O

Theorem 1.22. For all m,n € N, In(m + n) = In(m) + In(n).
Proof.

In(m) + In(n) [(m+1,1)]+[(n+1,1)]
[(m+14+n+1,1+1)]
[((m+mn)+1,1)]

= In(m+n) O

Theorem 1.23. For all m,n € N, Iy(m -n) = In(m) - In(n).
Proof.

In(m) - In(n) = [(m+1,1)]-[(n+1,1)]

(m+ 1+ +1)QAQ),(m+ 1)1+ 1(n+1))]
mn+m+n+l4+lm+n+1+1)
mn+1,1)]

= In(m-n) O

[(
[(
= [(
[(



Theorem 1.24. For all m,n € N with m > n, Ix(m) > In(n).

Proof.
In(m) —In(n) = [(m+1,1)] + (=[(n +1,1)])
= [(m+1,1)]+[(1,n+1)]
= [(m+1+1,14n+1)
= [(m,n)].
From 1.17, [(m,n)] € Z*. Therefore, In(m) — In(n) € Zt = Iy(m) > In(n), as desired. O
Identification

For all n € N, we shall identify In(n) with n. With this identification,
0«0
11
N=ztczZ
Z ={n:neN}U{-n:neN}U{0}

2 Rationals
Theorem 2.1. Define a relation ~g on Z x (Z \ {0})) as

(m,n) ~q (p,q) if mq=np.
Then, ~q is an equivalence relation on Z x (Z \ {0})).

Proof. For an arbitrary (m,n) € Z x (Z\ {0}), clearly (m,n) ~g (m,n), hence ~gq is reflexive.

Again, for arbitrary (m,n),(p,q) € Z x (Z\ {0}), if (m,n) ~qg (p,q), we have mg = np. By the
commutativity of multiplication on integers, pn = gm, so (p,q) ~g (m,n), hence ~q is symmetric.

For (m,n),(p,q),(r,s) € Z x (Z\ {0}), if (m,n) ~q (p,q) and (p, q) ~q (7, s), we have mq = np and
ps = qr. Thus, mgps = npqr, so ms = nr. Thus, (m,n) ~gq (r,s), hence ~gq is transitive.

Therefore, ~q is an equivalence relation on Z x (Z\ {0})). O

Notation. Let us set

Q = (Zx(Z\{0}))/ ~q,
0 := [(0,1)], 1 := [(1,1)].
Definition (Addition). For a = [(m,n)], b =[(p,q)] € Q, we define
a+b = [(mg+np,ng)].
Theorem 2.2. Addition (+) is well-defined, associative and commutative.

Proof. First, we show that + is well-defined. Let a = [(m,n)] = [(m/,n")], b = [(p,9)] = [(v/,¢)] € Q.
Now, (m,n) ~g (m/,n’) and (p,q) ~o (p’,¢’), from which we have mn’ = m/n and pq¢’ = p’q. We claim

a+b=[(mq+np,ng)] = [(m'q +n'p’,n'q)]
(mq+np)(n'q’) = (m'q" +n'p')(ng)
mn'qq’ +nn'pg’ = m'ngq’ + nn'p'q
nn'(p'q — pq’)
qq'(0) = nn’(0)

aq/ (mn’ — m'n)

which is clearly true.



For a,b,c € Z, let a = [(m,n)],b = [(p, ¢)],c = [(r, s)].

(a+0b) +c = [(mg+np,ng)+[(r,s)]
[((mq + np)s + nq(r), ngs)]

= [(mgs + nps + nqr,ngs)]
[(
[(m

m)qs +n(ps + qr), ngs]
= [(m,n)] + [(ps + qr, ¢5)]
= a+ (b +c)

Therefore, + is associative.

a+b = [(mq+np,ng)]
= [(pn + gm, qn)]
=b+a

Therefore, + is commutative. O
Lemma 2.3. For all (m,n) € Z x (Z\ {0}), k € Z\ {0}, [(m,n)] = [(mk,nk)] € Q.

Proof. Tt is sufficient to show that (m,n) ~g (mk,nk), i.e. mnk = nmk, which is certainly true. O
Lemma 2.4. For alln € Z\ {0}, [(n,n)] = 1.

Proof. Tt is sufficient to show that (n,n) ~q (1,1), i.e. n-1=mn-1, which is certainly true. O
Theorem 2.5. Foralla€ Q,0+a=a=a-+0.

Proof. Let a = [(m,n)] € Q.

a+0 = [(m,n)]+[(0,1)]
— [(m-14n-0,n-1)]
= [(m,n)]
a+6;a:0+a =

Theorem 2.6. For all a € Q, there exists a unique x € Q, satisfyinga+x=0=x+ a.

Proof. For a = [(m,n)] € Q, construct x = [(—m,n)] € Q. Clearly, a + = = [(mn + n(—m),nn)] = 0.
From commutativity of +, a +x =0 =z + a.
We now show that z is unique. Let 2/ € Q, a+2' =0=2" +a.

a+az’ =0
+(a+2') = 2+0
(x+a)+2 = x
0+2 =ux
¥ = O

Notation. We denote x as —a and say that —a is the negative of a.
Corollary 2.6.1. If a = [(m,n)] € Q, then —a = [(—m,n)].

Notation. For a,b € Q, we write
a—>b = a+ (-b).

Theorem 2.7. For all a,b € Q, there exists a unique x € Q satisfying a + x = b.



Proof. From the well-defined nature of +, there exists a unique z =b—a =0+ (—a) € Q.

a+z = a+ (b+ (—a))
a+ ((—a)+b)
(a+(—a))+0b
=0+

=

Let 2’ € Q,a+ 2’ =b.
a+z =b
r+(a+a') =xz+b
(r+a)+2" = x+b
b+z' =b+u
b+ (b+2') = —b+ (b+2)
(=b+b)+2 = (-b+b)+z
0+2 = 0+a

Definition (Multiplication). For a = [(m,n)], b = [(p, ¢)] € Q, we define
a-b = [(mp,ng)].
Theorem 2.8. Multiplication (-) is well-defined, associative and commutative.

Proof. First, we show that - is well-defined. Let a = [(m,n)] = [(m/,n")], b = [(p,q)] = [(?/,d)] € Q.
Now, (m,n) ~g (m/,n’) and (p,q) ~o (p’,¢’), from which we have mn’ = m/n and pq¢’ = p’q. We claim
a-b=[(mp,ng)] = [(m'p’,n'q)]

(mp)(n'q’) = (nq)(m'p’)
(mn')(pq') = (m'n)(p'q)

which is clearly true.

For a,b,c € Z, let a = [(m,n)],b = [(p, q)],c = [(r,s)].

(a-0)-c = [(mp,ng)]-[(r,s)]
= [((mp)r, (ng)s)]
= [(mpr,ngs)]

a-(b-c) = [(m,n)]-[(pr,qs)]
= [(m(pr),n(gs))]
= [(mpr,ngs)]

Therefore, (a-b)-c=a- (b-c), i.e. - is associative.

a-b = [(mp,ng)]

= [(pm, qn)]
=b-a
Therefore, - is commutative. O
Theorem 2.9. Foralla€Q,a-1=a=1"a.
Proof. Let a = [(m,n)] € Q.
a-1 = [(mn)][(g,1)]
= [(m,n)]
= a
a-1=a=1a O

co



Theorem 2.10. Foralla€Z,a-0=0=0-a.
Proof. Let a = [(m,n)] € Q.

a-0 = [(m,n)][(0,1)]
= [(m-0,n)]
=0
a-0=0=0-a O

Theorem 2.11. For all a € Q\ {0}, there exists a unique x € Q satisfyinga-r=1=z-a

Proof. For a = [(m,n)] € Q\ {0}, construct z = [(n,m)] € Q. Clearly, a - x = [(mn,nm)] = 1. From
commutativity of -, a -z =1= 2 - a.
We now show that z is unique. Let 2/ € Q,a-2' =1 =2'-a.

a-r =

=

—

8
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Notation. We denote x as a~' and say that a~' is the inverse of a.

Theorem 2.12. For all a,b € Q\ {0}, there exists a unique x € Q satisfying a - x = b.

Proof. From the well-defined nature of -, there exists a unique x = a~%-b € Q.
a-(a=t-b)

= (a-a )b

=10

=b

a-r =

Let ' € Q, a-2' =0.
a-r’ =b
z-(a-2') = x-b
2l =x-b
¥ =b-x
b (b)) = bt (b-2)
bt = (b7t b)

x
1.2/ =1z
x x

Theorem 2.13 (Distributivity). For all a,b,c€ Q, a-(b+c¢)=a-b+a-c.
Proof. For a,b,¢ € Q, let a = [(m,n)],b = [(p,q)],c = [(r;5)].

a-(b+c) = [(m,n)]-[(ps+qr,qs)]
(ps + qr),ngs)]

mps + nqr,ngs)]

(mp)(ns) + (nq)(mr), (nq)(ns))]
mnps + mnqr,nngs))

n(mps +mqr),n(ngs))]

mps + mqr,ngs)]

=[(
[(
[(m
[(
a-b+a-c = [(mp,ng)]+ [(mr,ns)]
[(
[(
[(
[(

Hence, a- (b+c¢)=a-b+a-c O



Theorem 2.14. For all a,b € Q, (—a)-b=—(a-b).

Proof.
(=a)-b+a-b = ((—a)+a)-b
=0-b
=0
(=a)-b = —(a-b) O

Theorem 2.15. For alla,b € Q, (—a)-(-b) =a-b.
Proof.

Lemma 2.16. Ifa = [(m,n)] € Q, a # 0, then m # 0.

Proof. Assume that m = 0. Then, we have (m,n) ~q 0, contradicting our premise. Hence, we must
have m # 0. O

Theorem 2.17 (No zero divisors). For all a,b € Q with a,b # 0, we have a - b # 0.

Proof. Let a = [(m,n)],b=[(p,q)] € Q. Note that m # 0, p # 0, since a,b # 0.
Assume that our theorem is false, i.e. a-b=0. Then [(mp,ng)] =0 = mp = 0.
From 1.15.1, m = 0 or p = 0, which contradicts our premise.
Hence, a - b # 0. O

Corollary 2.17.1. For alla,bc Q, ifa-b=0, thena =0 orb=0.

Theorem 2.18 (Cancellation). For a,b,c € Q with a #0, we have a-b=a-c=b=c.

Proof.
a-b=a-c
-1 -1
a " (a-b) =a"(a-c)
at-a)-b=(ata)c
b c O

Lemma 2.19. For all a = [(m,n)] € Q, a = [(—m, —n)].

Proof. Tt is sufficient to show that (m,n) ~g (—m, —n), i.e. m(—n) = n(—m), which is certainly true. O
Definition (Order). For all a = [(m,n)],b = [(p, ¢)] € Q, n,q € N, we say that a > b if mq > np.
Theorem 2.20. For all a,b € Q, we have a-b >0 ifa,b >0 ora,b < 0.

Proof. Let a = [(m,n)],b = [(p,q)] € Q, n,q € N. From n,q € N =Z% we have n > 0 and ¢ > 0, so
ng > 0= ng € N.

If a,b > 0, then m > 0 and p > 0. Thus, mp > 0 which gives a - b = [(mp,nq)] > 0.

If a,b < 0, then 0 > a and 0 > b so 0 > m and 0 > p. Thus, —m,—n > 0, so (—m)(—n) = mn > 0,
which gives a - b > 0. O

Definition (Identification map). Define Iz: Z — Q by
Iz(n) = [(n,1)], forallneZ.

Theorem 2.21. [y is injective.

10



Proof. Let m,n € Z.

[(m,1)] = [(n,1)]
m-1 =mn-1

Hence, I7 is injective.
Theorem 2.22. I(0) = 0.

Proof.
I12(0) = [(0,1)] = 0

I
=i

Theorem 2.23. (1)

Proof.
I(1) = [(1,1)] = 1

Theorem 2.24. For all m,n € Z, Iz(m +n) = Iz(m) + Iz(n).
Proof.

Iz(m) + Iz(n) = [(m,1)] + [(n,1)]
= [(m-1+41-n,1-1)]
= [(m+n,1)]
= Iz(m+n)

Theorem 2.25. For all m,n € Z, Iz(m -n) = Iz(m) - Iz(n).

Proof.

Iz(m) - I(n) = [(m,1)] - [(n,1)]
= [(m-n,1-1)]
= [(mn,1)]
= Iz(m-n)

Theorem 2.26. For all m,n € Z with m > n, Iz(m) > Iz(n).

Proof. We claim Iz(m) > Iz(n), i.e. [(m,1)] > [(n,1)]. This is equivalent to m > n, which is true.
Identification
For all n € Z, we shall identify I(n) with n. With this identification,
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