MA 1101 : Mathematics I

Satvik Saha, 19MS154

September 14, 2019

Solution 1.

Let R be a relation on \mathbb{R}^2 such that

 $(x_1, x_2) R(y_1, y_2)$ if $x_1 = y_1$.

(i) For an arbitrary $(x, y) \in \mathbb{R}^2$, (x, y) R(x, y), since x = x. Therefore, R is reflexive. For $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$, if $(x_1, x_2) R(y_1, y_2)$, we can write $x_1 = y_1 \Rightarrow y_1 = x_1$. Thus, we have $(y_1, y_2) R(x_1, x_2)$. Therefore, R is symmetric.

For $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in \mathbb{R}^2$, if $(x_1, x_2) R(y_1, y_2)$ and $(y_1, y_2) R(z_1, z_2)$, we can write $x_1 = y_1$ and $y_1 = z_1$, from which we have $x_1 = z_1 \Rightarrow (x_1, x_2) R(z_1, z_2)$. Therefore, R is transitive.

Hence, R is an equivalence relation.

(ii) For $(x_1, x_2) \in \mathbb{R}^2$, we have

$$[(x_1, x_2)] = \{(y_1, y_2) \in \mathbb{R}^2 : (x_1, x_2) R (y_1, y_2)\}$$
$$= \{(y_1, y_2) \in \mathbb{R}^2 : x_1 = y_1\}$$
$$= \{(x_1, y) : y \in \mathbb{R}\}$$

Therefore, the quotient set of R is given by

$$\mathbb{R}/R = \{L_x : x \in \mathbb{R}\},\$$

where $L_x = \{(x, y) : y \in \mathbb{R}\}$. Clearly, each equivalence class $L_x \in \mathbb{R}/R$ is a vertical line in the Cartesian plane, passing through (x, 0).

Solution 2.

Let R be a relation on \mathbb{R}^2 such that

$$(x_1, x_2) R(y_1, y_2)$$
 if $x_1^2 + x_2^2 = y_1^2 + y_2^2$

(i) For an arbitrary $(x, y) \in \mathbb{R}^2$, (x, y) R(x, y), since $x^2 + y^2 = x^2 + y^2$. Therefore, R is reflexive.

For $(x_1, x_2), (y_1, y_2) \in \mathbb{R}^2$, if $(x_1, x_2) R(y_1, y_2)$, we can write $x_1^2 + x_2^2 = y_1^2 + y_2^2 \Rightarrow y_1^2 + y_2^2 = x_1^2 + x_2^2$. Thus, we have $(y_1, y_2) R(x_1, x_2)$. Therefore, R is symmetric.

For $(x_1, x_2), (y_1, y_2), (z_1, z_2) \in \mathbb{R}^2$, if $(x_1, x_2) R(y_1, y_2)$ and $(y_1, y_2) R(z_1, z_2)$, we can write $x_1^2 + x_2^2 = y_1^2 + y_2^2$ and $y_1^2 + y_2^2 = z_1^2 + z_2^2$, from which we have $x_1^2 + x_2^2 = z_1^2 + z_2^2 \Rightarrow (x_1, x_2) R(z_1, z_2)$. Therefore, R is transitive.

Hence, R is an equivalence relation.

(ii) For $(x_1, x_2) \in \mathbb{R}^2$, we have

$$[(x_1, x_2)] = \{(y_1, y_2) \in \mathbb{R}^2 : (x_1, x_2) R(y_1, y_2)\} \\ = \{(y_1, y_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = y_1^2 + y_2^2\}$$

Clearly, each equivalence class is a circle of radius $r = \sqrt{x_1^2 + x_2^2}$ centred at the origin. Such a circle can be denoted by $C_r = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = r^2\}.$

Therefore, the quotient set of R is given by

$$\mathbb{R}/R = \{C_r : r \ge 0\}.$$

Solution 3.

Let R be a relation on \mathbb{N}^2 such that

$$(m,n) R(p,q)$$
 if $m+q=n+p$

(i) For an arbitrary $(m, n) \in \mathbb{N}^2$, (m, n) R(m, n), since m + n = n + m. Therefore, R is reflexive.

For $(m, n), (p, q) \in \mathbb{N}^2$, if (m, n) R(p, q), we can write $m + q = n + p \Rightarrow p + n = q + m$. Thus, we have (p, q) R(m, n). Therefore, R is symmetric.

For $(m,n), (p,q), (r,s) \in \mathbb{N}^2$, note that $m + q = n + p \Leftrightarrow m - n = p - q$. If (m,n) R(p,q) and ((p,q) R(r,s)), we can write m - n = p - q and p - q = r - s, from which we have $m - n = r - s \Rightarrow (m,n) R(r,s)$. Therefore, R is transitive.

Hence, R is an equivalence relation.

(ii) For $(m, n) \in \mathbb{N}^2$, we have

$$[(m,n)] = \{(p,q) \in \mathbb{N}^2 : (m,n) R (p,q)\}$$

= $\{(p,q) \in \mathbb{N}^2 : m+q = n+p\}$
= $\{(p,q) \in \mathbb{N}^2 : m-n = p-q\}$

Clearly, each equivalence class has its elements (p,q) on the line m - n = x - y in the Cartesian plane. Note that $m - n = p - q \Rightarrow q = p - (m - n)$, so for $q \in \mathbb{N}$, we must have p > (m - n). Thus, we have

$$[(m,n)] = \{(p, p - (m - n)) : p \in \mathbb{N}, p > (m - n)\}$$

Solution 4.

Let R be a relation on $\mathbb{R}^2 \setminus \{(0,0)\}$ such that

$$(x_1, x_2) R(y_1, y_2)$$
 if $(y_1, y_2) = \alpha(x_1, x_2), \quad \alpha \neq 0$

(i) Let $x_i \in \mathbb{R} \setminus \{0\}$. Clearly, R is reflexive since $(x_1, x_2) = (1) \cdot (x_1, x_2)$. Note that $\frac{1}{\alpha} \in \mathbb{R} \setminus \{0\}$, so if $(x_1, x_2) R(x_3, x_4)$, we have $(x_3, x_4) = \alpha(x_1, x_2) \Rightarrow (x_1, x_2) = \frac{1}{\alpha}(x_3, x_4)$. Therefore, R is symmetric. If $(x_3, x_4) = \alpha(x_1, x_2)$ and $(x_5, x_6) = \beta(x_3, x_4)$, we have $(x_5, x_6) = (\alpha\beta) \cdot (x_1, x_2)$. Therefore, R is

If $(x_3, x_4) = \alpha(x_1, x_2)$ and $(x_5, x_6) = \beta(x_3, x_4)$, we have $(x_5, x_6) = (\alpha \beta) \cdot (x_1, x_2)$. Therefore, *R* is transitive.

Hence, R is an equivalence relation.

(ii) For $(r,s) \in \mathbb{R} \setminus (0,0)$, we have

$$[(r,s)] = \{(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} : (r,s) R (x,y)\} \\ = \{(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\} : (x,y) = \alpha(r,s), \alpha \neq 0\} \\ = \{(\alpha r, \alpha s) : \alpha, r, s \in \mathbb{R} \setminus \{0\}\}$$

Clearly, each equivalence class [(r, s)] is a line of slope s/r, through (1, s/r), excluding the origin in the Cartesian plane.

Solution 5.

Let $n \in \mathbb{N}$ and X be a set of n elements. An arbitrary relation R on X is a subset of the Cartesian product $X \times X = X^2$. Note that for $(a, b) \in X^2$, a can be any of the n elements in X, and b can be independently any of the n elements in X. Thus, we have a total of n^2 elements in X^2 .

- (i) Since R is any subset $R \subseteq X^2$, we can say that a relation on X is any $R \in \mathcal{P}(X^2)$. Thus, the total number of possible relations R is the number of elements in $\mathcal{P}(X^2)$, i.e., 2^{n^2} .
- (ii) Let $D = \{(x, x) : x \in X\}$ be the set of the diagonal elements of X^2 . Clearly, there are *n* elements in *D*. A reflexive relation *R* must have $D \subseteq R$. Thus, of the n^2 elements of X^2 , the *n* diagonal elements are fixed the remaining $n^2 n$ elements can be chosen to be or not to be in *R*, giving us a total of 2^{n^2-n} such relations.
- (iii) Since $xRy \Rightarrow yRx$ if x = y, each of the *n* diagonal elements of X^2 may or may not be present in a symmetric relation *R* on *X*. Also, the presence of $(x, y) \in X^2 \setminus D$ in *R* forces the presence of (y, x) in *R*. Thus, we have $(n^2 - n)/2$ choices for the non-diagonal elements, giving a total of $2^n \cdot 2^{(n^2-n)/2} = 2^{(n^2+n)/2}$ such relations.
- (iv) As before, we have $(n^2 n)/2$ choices for non-diagonal elements to fulfil symmetry. The remaining diagonal elements are fixed to fulfil reflexivity, giving a total of $2^{(n^2-n)/2}$ such relations.