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Solution 1.
Let R be a relation on R2 such that

(x1, x2)R (y1, y2) if x1 = y1.

(i) For an arbitrary (x, y) ∈ R2, (x, y)R (x, y), since x = x. Therefore, R is reflexive.
For (x1, x2), (y1, y2) ∈ R2, if (x1, x2)R (y1, y2), we can write x1 = y1 ⇒ y1 = x1. Thus, we have
(y1, y2)R (x1, x2). Therefore, R is symmetric.
For (x1, x2), (y1, y2), (z1, z2) ∈ R2, if (x1, x2)R (y1, y2) and (y1, y2)R (z1, z2), we can write x1 = y1
and y1 = z1, from which we have x1 = z1 ⇒ (x1, x2)R (z1, z2). Therefore, R is transitive.
Hence, R is an equivalence relation.

(ii) For (x1, x2) ∈ R2, we have

[(x1, x2)] = {(y1, y2) ∈ R2 : (x1, x2)R (y1, y2)}
= {(y1, y2) ∈ R2 : x1 = y1}
= {(x1, y) : y ∈ R}

Therefore, the quotient set of R is given by

R/R = {Lx : x ∈ R},

where Lx = {(x, y) : y ∈ R}. Clearly, each equivalence class Lx ∈ R/R is a vertical line in the
Cartesian plane, passing through (x, 0).
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Solution 2.
Let R be a relation on R2 such that

(x1, x2)R (y1, y2) if x2
1 + x2

2 = y21 + y22

(i) For an arbitrary (x, y) ∈ R2, (x, y)R (x, y), since x2 + y2 = x2 + y2. Therefore, R is reflexive.
For (x1, x2), (y1, y2) ∈ R2, if (x1, x2)R (y1, y2), we can write x2

1+x2
2 = y21 +y22 ⇒ y21 +y22 = x2

1+x2
2.

Thus, we have (y1, y2)R (x1, x2). Therefore, R is symmetric.
For (x1, x2), (y1, y2), (z1, z2) ∈ R2, if (x1, x2)R (y1, y2) and (y1, y2)R (z1, z2), we can write x2

1+x2
2 =

y21+y22 and y21+y22 = z21+z22 , from which we have x2
1+x2

2 = z21+z22 ⇒ (x1, x2)R (z1, z2). Therefore,
R is transitive.
Hence, R is an equivalence relation.

(ii) For (x1, x2) ∈ R2, we have

[(x1, x2)] = {(y1, y2) ∈ R2 : (x1, x2)R (y1, y2)}
= {(y1, y2) ∈ R2 : x2

1 + x2
2 = y21 + y22}

Clearly, each equivalence class is a circle of radius r =
√
x2
1 + x2

2 centred at the origin. Such a
circle can be denoted by Cr = {(x, y) ∈ R2 : x2 + y2 = r2}.
Therefore, the quotient set of R is given by

R/R = {Cr : r ≥ 0}.
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Solution 3.
Let R be a relation on N2 such that

(m,n)R (p, q) if m+ q = n+ p

(i) For an arbitrary (m,n) ∈ N2, (m,n)R (m,n), since m+ n = n+m. Therefore, R is reflexive.
For (m,n), (p, q) ∈ N2, if (m,n)R (p, q), we can write m + q = n + p ⇒ p + n = q +m. Thus, we
have (p, q)R (m,n). Therefore, R is symmetric.
For (m,n), (p, q), (r, s) ∈ N2, note that m + q = n + p ⇔ m − n = p − q. If (m,n)R (p, q) and
((p, q)R (r, s), we can write m−n = p− q and p− q = r− s, from which we have m−n = r− s ⇒
(m,n)R (r, s). Therefore, R is transitive.
Hence, R is an equivalence relation.

(ii) For (m,n) ∈ N2, we have

[(m,n)] = {(p, q) ∈ N2 : (m,n)R (p, q)}
= {(p, q) ∈ N2 : m+ q = n+ p}
= {(p, q) ∈ N2 : m− n = p− q}

Clearly, each equivalence class has its elements (p, q) on the line m − n = x − y in the Cartesian
plane. Note that m−n = p− q ⇒ q = p− (m−n), so for q ∈ N, we must have p > (m−n). Thus,
we have

[(m,n)] = {(p, p− (m− n)) : p ∈ N, p > (m− n)}
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Solution 4.
Let R be a relation on R2 \ {(0, 0)} such that

(x1, x2)R (y1, y2) if (y1, y2) = α(x1, x2), α ̸= 0

(i) Let xi ∈ R \ {0}. Clearly, R is reflexive since (x1, x2) = (1) · (x1, x2).
Note that 1

α ∈ R\{0}, so if (x1, x2)R (x3, x4), we have (x3, x4) = α(x1, x2) ⇒ (x1, x2) =
1
α (x3, x4).

Therefore, R is symmetric.
If (x3, x4) = α(x1, x2) and (x5, x6) = β(x3, x4), we have (x5, x6) = (αβ) · (x1, x2). Therefore, R is
transitive.
Hence, R is an equivalence relation.

(ii) For (r, s) ∈ R \ (0, 0), we have

[(r, s)] = {(x, y) ∈ R2 \ {(0, 0)} : (r, s)R (x, y)}
= {(x, y) ∈ R2 \ {(0, 0)} : (x, y) = α(r, s), α ̸= 0}
= {(αr, αs) : α, r, s ∈ R \ {0}}

Clearly, each equivalence class [(r, s)] is a line of slope s/r, through (1, s/r), excluding the origin
in the Cartesian plane.
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Solution 5.
Let n ∈ N and X be a set of n elements. An arbitrary relation R on X is a subset of the Cartesian
product X × X = X2. Note that for (a, b) ∈ X2, a can be any of the n elements in X, and b can be
independently any of the n elements in X. Thus, we have a total of n2 elements in X2.

(i) Since R is any subset R ⊆ X2, we can say that a relation on X is any R ∈ P(X2). Thus, the total
number of possible relations R is the number of elements in P(X2), i.e., 2n2 .

(ii) Let D = {(x, x) : x ∈ X} be the set of the diagonal elements of X2. Clearly, there are n elements
in D. A reflexive relation R must have D ⊆ R. Thus, of the n2 elements of X2, the n diagonal
elements are fixed – the remaining n2 − n elements can be chosen to be or not to be in R, giving
us a total of 2n2−n such relations.

(iii) Since xRy ⇒ yRx if x = y, each of the n diagonal elements of X2 may or may not be present
in a symmetric relation R on X. Also, the presence of (x, y) ∈ X2 \ D in R forces the presence
of (y, x) in R. Thus, we have (n2 − n)/2 choices for the non-diagonal elements, giving a total of
2n · 2(n2−n)/2 = 2(n

2+n)/2 such relations.

(iv) As before, we have (n2−n)/2 choices for non-diagonal elements to fulfil symmetry. The remaining
diagonal elements are fixed to fulfil reflexivity, giving a total of 2(n2−n)/2 such relations.
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