MA 1101 : Mathematics I

Problem 1. (Ring of integers)

Define an equivalence relation $\sim_{\mathbb{Z}}$ on $\mathbb{N} \times \mathbb{N}$ as

$$(m,n) \sim_{\mathbb{Z}} (p,q)$$
 if $m+q=n+p$.

Let us set

$$\mathbb{Z} := (\mathbb{N} \times \mathbb{N}) / \sim_{\mathbb{Z}},$$

$$\overline{0} := [(1,1)], \ \overline{1} := [(2,1)], \ \mathbb{Z}^+ := \{ [(n+1,1)] : n \in \mathbb{N} \}.$$

For $a = [(m, n)], b = [(p, q)] \in \mathbb{Z}$, we define

$$a + b := [(m + p, n + q)], a \cdot b := [(mp + nq, mq + np)].$$

Prove that

(i) Addition :

- (a) + is well-defined, associative and commutative.
- (b) $a + \overline{0} = a = \overline{0} + a$, for all $a \in \mathbb{Z}$.
- (c) For all $a \in \mathbb{Z}$, there exists a unique $x \in \mathbb{Z}$ satisfying $a + x = \overline{0} = x + a$. We denote x as -a and say that -a is the *negative* of a.
- (d) For all $a, b \in \mathbb{Z}$, there exists a unique $x \in \mathbb{Z}$ satisfying a + x = b.

(ii) Multiplication :

- (a) \cdot is well-defined, associative and commutative.
- (b) $a \cdot \overline{1} = a = \overline{1} \cdot a$, for all $a \in \mathbb{Z}$.
- (iii) **Distributivity :** For all $a, b, c \in \mathbb{Z}$, $a \cdot (b + c) = a \cdot b + a \cdot c$.
- (iv) No zero divisors : For all $a, b \in \mathbb{Z}$ with $a, b \neq \overline{0}$, we have $a \cdot b \neq \overline{0}$.
- (v) **Cancellation :** For all $a, b, c \in \mathbb{Z}$ with $a \neq \overline{0}$, we have $a \cdot b = a \cdot c \Rightarrow b = c$.
- (vi) **Order**: For all $a, b \in \mathbb{Z}$, we say that a > b if $a b := a + (-b) \in \mathbb{Z}^+$. Show that, for all $a, b \in \mathbb{Z}$, we have $a \cdot b > 0$ if a, b > 0 or a, b < 0.
- (vii) **Identification map** : Define $I_{\mathbb{N}} : \mathbb{N} \to \mathbb{Z}$ by

$$I_{\mathbb{N}}(n) := [(n+1,1)], \text{ for all } n \in \mathbb{N}.$$

Show that

- (a) $I_{\mathbb{N}}$ is one-one.
- (b) $I_{\mathbb{N}}(\mathbb{N}) = \mathbb{Z}^+$.
- (c) $I_N(1) = \bar{1}$.
- (d) $I_{\mathbb{N}}(m+n) = I_{\mathbb{N}}(m) + I_N(n)$, for all $m, n \in \mathbb{N}$.
- (e) $I_{\mathbb{N}}(m \cdot n) = I_{\mathbb{N}}(m) \cdot I_{\mathbb{N}}(n)$, for all $m, n \in \mathbb{N}$.
- (f) $I_{\mathbb{N}}(m) > I_{\mathbb{N}}(n)$, for all $m, n \in \mathbb{N}$ with m > n.

Problem 2. (Field of rationals)

Define an equivalence relation $\sim_{\mathbb{Q}}$ on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ as

$$(m,n) \sim_{\mathbb{Q}} (p,q)$$
 if $mq = np$.

Let us set

$$\mathbb{Z} := (\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})) / \sim_{\mathbb{Q}}, \\ \overline{0} := [(0,1)], \ \overline{1} := [(1,1)].$$

For $a = [(m, n)], b = [(p, q)] \in \mathbb{Q}$, we define

$$a + b := [(mq + np, nq)], a \cdot b := [(mp, nq)].$$

Prove that

(i) Addition :

- (a) + is well-defined, associative and commutative.
- (b) $a + \overline{0} = a = \overline{0} + a$, for all $a \in \mathbb{Q}$.
- (c) For all $a \in \mathbb{Q}$, there exists a unique $x \in \mathbb{Q}$ satisfying $a + x = \overline{0} = x + a$. We denote x as -a and say that -a is the *negative* of a.
- (d) For all $a, b \in \mathbb{Q}$, there exists a unique $x \in \mathbb{Q}$ satisfying a + x = b.
- (ii) Multiplication :
 - (a) \cdot is well-defined, associative and commutative.
 - (b) $a \cdot \overline{1} = a = \overline{1} \cdot a$, for all $a \in \mathbb{Q}$.
 - (c) For all $a \in \mathbb{Q} \setminus \{\overline{0}\}$, there exists a unique $x \in \mathbb{Q}$ satisfying $a \cdot x = \overline{1} = x \cdot a$. We denote x as a^{-1} and say that a^{-1} is the *inverse* of a.
 - (d) For all $a, b \in \mathbb{Q} \setminus \{\overline{0}\}$, there exists a unique $x \in \mathbb{Q}$ satisfying $a \cdot x = b$.
- (iii) **Distributivity :** For all $a, b, c \in \mathbb{Q}$, $a \cdot (b + c) = a \cdot b + a \cdot c$.
- (iv) No zero divisors : For all $a, b \in \mathbb{Q}$ with $a, b \neq \overline{0}$, we have $a \cdot b \neq \overline{0}$.
- (v) **Cancellation :** For all $a, b, c \in \mathbb{Q}$ with $a \neq \overline{0}$, we have $a \cdot b = a \cdot c \Rightarrow b = c$.
- (vi) **Order**: For all $a, b \in \mathbb{Q}$, we say that a > b if mq > np where a = [(m, n)], b = [(p, q)] with $n, q \in \mathbb{N}$. Show that, for all $a, b \in \mathbb{Q}$, we have $a \cdot b > 0$ if a, b > 0 or a, b < 0.
- (vii) **Identification map** : Define $I_{\mathbb{Z}} : \mathbb{Z} \to \mathbb{Q}$ by

$$I_{\mathbb{Z}}(n) := [(n,1)], \text{ for all } n \in \mathbb{Z}.$$

Show that

- (a) $I_{\mathbb{Z}}$ is one-one.
- (b) $I_{\mathbb{Z}}(0) = \overline{0}, I_{\mathbb{Z}}(1) = \overline{1}.$
- (c) $I_{\mathbb{Z}}(m+n) = I_{\mathbb{Z}}(m) + I_Z(n)$, for all $m, n \in \mathbb{Z}$.
- (d) $I_{\mathbb{Z}}(m \cdot n) = I_{\mathbb{Z}}(m) \cdot I_{\mathbb{Z}}(n)$, for all $m, n \in \mathbb{Z}$.
- (e) $I_{\mathbb{Z}}(m) > I_{\mathbb{Z}}(n)$, for all $m, n \in \mathbb{Z}$ with m > n.