MA 1101 : Mathematics I

Problem 1. (Ring of integers)

Define an equivalence relation $\sim_{\mathbb{Z}}$ on $\mathbb{N} \times \mathbb{N}$ as

$$
(m,n) \sim_{\mathbb{Z}} (p,q)
$$
 if $m+q = n+p$.

Let us set

$$
\mathbb{Z} := (\mathbb{N} \times \mathbb{N}) / \sim_{\mathbb{Z}},
$$

$$
\bar{0} := [(1,1)], \ \bar{1} := [(2,1)], \ \mathbb{Z}^+ := \{[(n+1,1)] : n \in \mathbb{N}\}.
$$

For $a = [(m, n)], b = [(p, q)] \in \mathbb{Z}$, we define

$$
a + b := [(m + p, n + q)], a \cdot b := [(mp + nq, mq + np)].
$$

Prove that

(i) Addition :

- $(a) + is$ well-defined, associative and commutative.
- (b) $a + \overline{0} = a = \overline{0} + a$, for all $a \in \mathbb{Z}$.
- (c) For all $a \in \mathbb{Z}$, there exists a unique $x \in \mathbb{Z}$ satisfying $a + x = \overline{0} = x + a$. We denote x as $-a$ and say that $-a$ is the *negative* of a .
- (d) For all $a, b \in \mathbb{Z}$, there exists a unique $x \in \mathbb{Z}$ satisfying $a + x = b$.

(ii) Multiplication :

- (a) \cdot is well-defined, associative and commutative.
- (b) $a \cdot \overline{1} = a = \overline{1} \cdot a$, for all $a \in \mathbb{Z}$.
- (iii) Distributivity : For all $a, b, c \in \mathbb{Z}$, $a \cdot (b+c) = a \cdot b + a \cdot c$.
- (iv) No zero divisors: For all $a, b \in \mathbb{Z}$ with $a, b \neq \overline{0}$, we have $a \cdot b \neq \overline{0}$.
- (v) **Cancellation :** For all $a, b, c \in \mathbb{Z}$ with $a \neq \overline{0}$, we have $a \cdot b = a \cdot c \Rightarrow b = c$.
- (vi) **Order** : For all $a, b \in \mathbb{Z}$, we say that $a > b$ if $a b := a + (-b) \in \mathbb{Z}^+$. Show that, for all $a, b \in \mathbb{Z}$, we have $a \cdot b > 0$ if $a, b > 0$ or $a, b < 0$.
- (vii) **Identification map :** Define $I_N : \mathbb{N} \to \mathbb{Z}$ by

$$
I_{\mathbb{N}}(n) := [(n+1,1)],
$$
 for all $n \in \mathbb{N}$.

Show that

- (a) $I_{\mathbb{N}}$ is one-one.
- (b) $I_{\mathbb{N}}(\mathbb{N}) = \mathbb{Z}^+$.
- (c) $I_N(1) = \overline{1}$.
- (d) $I_{\mathbb{N}}(m+n) = I_{\mathbb{N}}(m) + I_{N}(n)$, for all $m, n \in \mathbb{N}$.
- (e) $I_{\mathbb{N}}(m \cdot n) = I_{\mathbb{N}}(m) \cdot I_{\mathbb{N}}(n)$, for all $m, n \in \mathbb{N}$.
- (f) $I_{\mathbb{N}}(m) > I_{\mathbb{N}}(n)$, for all $m, n \in \mathbb{N}$ with $m > n$.

Problem 2. (Field of rationals)

Define an equivalence relation $\sim_{\mathbb{Q}}$ on $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ as

$$
(m, n) \sim_{\mathbb{Q}} (p, q)
$$
 if $mq = np$.

Let us set

$$
\mathbb{Z} := (\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})) / \sim_{\mathbb{Q}},
$$

$$
\bar{0} := [(0,1)], \ \bar{1} := [(1,1)].
$$

For $a = [(m, n)]$, $b = [(p, q)] \in \mathbb{Q}$, we define

$$
a + b := [(mq + np, nq)], a \cdot b := [(mp, nq)].
$$

Prove that

(i) Addition :

- $(a) + is$ well-defined, associative and commutative.
- (b) $a + \overline{0} = a = \overline{0} + a$, for all $a \in \mathbb{Q}$.
- (c) For all $a \in \mathbb{Q}$, there exists a unique $x \in \mathbb{Q}$ satisfying $a + x = \overline{0} = x + a$. We denote x as $-a$ and say that $-a$ is the *negative* of a.
- (d) For all $a, b \in \mathbb{Q}$, there exists a unique $x \in \mathbb{Q}$ satisfying $a + x = b$.
- (ii) Multiplication :
	- (a) · is well-defined, associative and commutative.
	- (b) $a \cdot \overline{1} = a = \overline{1} \cdot a$, for all $a \in \mathbb{Q}$.
	- (c) For all $a \in \mathbb{Q} \setminus \{\overline{0}\}\)$, there exists a unique $x \in \mathbb{Q}$ satisfying $a \cdot x = \overline{1} = x \cdot a$. We denote x as a^{-1} and say that a^{-1} is the *inverse* of a.
	- (d) For all $a, b \in \mathbb{Q} \setminus {\{\overline{0}\}}$, there exists a unique $x \in \mathbb{Q}$ satisfying $a \cdot x = b$.
- (iii) Distributivity : For all $a, b, c \in \mathbb{Q}$, $a \cdot (b + c) = a \cdot b + a \cdot c$.
- (iv) **No zero divisors :** For all $a, b \in \mathbb{Q}$ with $a, b \neq \overline{0}$, we have $a \cdot b \neq \overline{0}$.
- (v) **Cancellation :** For all $a, b, c \in \mathbb{Q}$ with $a \neq \overline{0}$, we have $a \cdot b = a \cdot c \Rightarrow b = c$.
- (vi) **Order** : For all $a, b \in \mathbb{Q}$, we say that $a > b$ if $mq > np$ where $a = [(m, n)], b = [(p, q)]$ with $n, q \in \mathbb{N}$. Show that, for all $a, b \in \mathbb{Q}$, we have $a \cdot b > 0$ if $a, b > 0$ or $a, b < 0$.
- (vii) **Identification map :** Define $I_{\mathbb{Z}} : \mathbb{Z} \to \mathbb{Q}$ by

$$
I_{\mathbb{Z}}(n) := [(n, 1)], \text{ for all } n \in \mathbb{Z}.
$$

Show that

- (a) $I_{\mathbb{Z}}$ is one-one.
- (b) $I_{\mathbb{Z}}(0) = \overline{0}, I_{\mathbb{Z}}(1) = \overline{1}.$
- (c) $I_{\mathbb{Z}}(m+n) = I_{\mathbb{Z}}(m) + I_{\mathbb{Z}}(n)$, for all $m, n \in \mathbb{Z}$.
- (d) $I_{\mathbb{Z}}(m \cdot n) = I_{\mathbb{Z}}(m) \cdot I_{\mathbb{Z}}(n)$, for all $m, n \in \mathbb{Z}$.
- (e) $I_{\mathbb{Z}}(m) > I_{\mathbb{Z}}(n)$, for all $m, n \in \mathbb{Z}$ with $m > n$.