MA 1101 : Mathematics I

Problem 1.

Define a relation R on $\mathbb{R}\times\mathbb{R}$ as

$$(x_1, x_2)R(y_1, y_2)$$
 if $x_1 = y_1$.

- (i) Check that R is an equivalence relation.
- (ii) Identify and draw the equivalence classes.

Problem 2.

Define a relation R on $\mathbb{R} \times \mathbb{R}$ as

$$(x_1, x_2)R(y_1, y_2)$$
 if $x_1^2 + x_2^2 = y_1^2 + y_2^2$.

- (i) Check that R is an equivalence relation.
- (ii) Identify and draw the equivalence classes.

Problem 3.

Define a relation R on $\mathbb{N}\times\mathbb{N}$ as

$$(m,n)R(p,q)$$
 if $m+q=n+p$.

- (i) Check that ${\cal R}$ is an equivalence relation.
- (ii) Identify and draw the equivalence classes.

Problem 4.

Define a relation R on $\mathbb{R} \times \mathbb{R} \setminus \{(0,0)\}$ as

$$(x_1, x_2)R(y_1, y_2)$$
 if $(y_1, y_2) = \alpha(x_1, x_2)$, for some $\alpha \neq 0$.

- (i) Check that R is an equivalence relation.
- (ii) Identify and draw the equivalence classes.

Problem 5.

Let $n \in \mathbb{N}$ and let X be a set of n elements. Calculate the number of

- (i) relations on X.
- (ii) reflexive relations on X.
- (iii) symmetric relations on X.
- (iv) reflexive and symmetric relations on X.