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Solution 1.1. A schematic of the path followed by P waves through the earth’s interior is presented
below.
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Note that we have assumed that the waves travel through two layers, both of which are isotropic and
homogeneous, with the boundaries perfectly horizontal. The upper layer has a uniform thickness of h.
The wave velocities in the upper and lower layers are assumed to be v1 and v2 respectively, with v2 > v1.
The blue line denotes the path of the P wave which travels from the source S (which is assumed to be
on the surface) directly to the destination D located at a distance x away. The red line shows the path
of the wave which strikes the interface of the layers at an angle θ, which turns out to be the critical
angle for reflection so that it continues travelling horizontally in the lower layer. These wavefronts on
the interface emit energy upwards in a fashion symmetrical to that of the incidence, so the wave which
reaches the destination D ascends at the same angle θ. The horizontal component of the distance covered
during the descent and ascent of the red line is denoted by ∆.

Let the times taken by the blue and red waves to reach D be t1 and t2 respectively. Since the blue
wave remains in the upper layer throughout, we must have x = v1t1, hence

t1(x) =
x

v1
.

This is the equation of a straight line passing through the origin, with slope 1/v1.
For the red wave, we apply Snell’s Law to calculate the angle of incidence for which the refracted

wave travels horizontally.
sin θ

v1
=

sin(π/2)

v2
, sin θ =

v1
v2
.

Now, we use simple trigonometry to obtain the horizontal segments ∆ = h tan θ and the lengths of the
slanted red segments L = h/ cos θ. The red wave thus travels a distance of 2L in the upper layer with
speed v1 and a distance x− 2∆ in the lower layer with speed v2, so

t2(x) =
x− 2∆

v2
+

2L

v1
=

x

v2
−
[

2h tan θ

v2
− 2h

v1 cos θ

]
.

This is the equation of a straight line with slope 1/v2. Note that ∆ and L are fixed independently of x.
We also note that the red waves can be observed only when x ≥ 2∆. We can make further progress by
noting that if sin θ = v1/v2, then

cos θ =

√
v22 − v21
v2

, tan θ =
v1√
v22 − v21

.
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Substituting these expressions, we have

t2(x) =
x

v2
−

[
2hv1

v2
√
v22 − v21

− 2hv2

v1
√
v22 − v21

]
=

x

v2
− 2h√

v22 − v21

[
v1
v2
− v2
v1

]
.

Simplifying,

t2(x) =
x

v2
+

2h

v1v2

√
v22 − v21 .

Note that since v2 > v1, the slope of the t−x curve of the blue line is more than that of the red line.
On the other hand, the red line has a positive time intercept t2(x = 0). This means that with increasing
x, the blue wave arrives first until a crossover point where the red wave takes over (due to faster travel
with v2). This crossover point xc can be obtained by setting t1 = t2, so

xc
v1

=
xc
v2

+
2h

v1v2

√
v22 − v21 ,

v2 − v1
v1v2

xc =
2h

v1v2

√
v22 − v21 .

This gives

xc = 2h

√
v22 − v21
v2 − v1

= 2h

√
v2 + v1
v2 − v1

.

The time of crossover is

t1(xc) = t2(xc) =
2h

v1

√
v2 + v1
v2 − v1

.

t

x

t2(x)

t1(x)

xc

t1(xc) = t2(xc)

The blue waves are called Pg waves, while the red waves are called Pn waves.

Note: The blue curve observed in reality does not pass through the origin, instead there is a time lag
even at x = 0, directly above the focus of the earthquake. This is because the focus is typically located
at some depth, so the waves take some time to reach the surface. If we had to take this into account in
our analysis, the blue curve would not be linear. Supposing the depth of the focus to be f , we see that
the distance to the receiving station is

√
f2 + x2, so the arrival time is given by

t′1(x) =

√
f2 + x2

v1
.

When f/x is small, we can write
√

1 + f2/x2 ≈ 1 + f2/2x2, so

t′1(x) ≈ x

v1
+

f2

2v1x
.

As x grows large, we get back our simpler expression t′1(x)→ x/v1.
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Solution 1.2

(a) (i) The S wave velocity curve vanishes in the outer core region, and reappears in the inner core.

(ii) The P and S wave velocities seem to increase with depth along with density, except at points
of discontinuity where they jump up or down. The major drop in P wave velocity is at the
D′′ layer as they enter the outer core.

(iii) The density profile has a major jump upwards, also at the D′′ layer marking the outer core.

(iv) Both P and S wave velocities rise greatly after exiting the crust, before suffering a dip in the
LVZ (Low Velocity Zone). The S wave velocity drop is slightly more pronounced. The density
curve shows a similar trend in this region. These changes are comparitively smooth.

(v) The P wave velocities are always higher than S wave velocities in a given zone.

(b) (i) The fact that the S waves vanish in the outer core indicates a liquid outer core. The reap-
pearance of S waves in the inner core suggests that it is solid.

(ii) The smooth changes (increase) in P and S wave velocity indicate that the material in those
regions is largely the same. The points of discontinuity mark regions where the material
changes abruptly, in terms of physical properties.

(iii) The major jump in density at the outer core indicates a change in composition of the material,
and reinforces the idea of a change in state.

(iv) The LVZ is not compositionally too different from the surrounding zones; instead, this zone
may have liquid components. It is not completely liquid, but rather is partially melted.

(v) The P wave velocity depends on some additional terms compared to the S waves, which is
natural since their physical natures differ (compression waves vs shear waves). The P wave
velocity is not merely a scaled up form of the S wave velocity.

(c) (i) S waves are shear waves, which can only properly travel in solids where a restoring force acts
on material moved perpendicular to the propagation of the wave. Thus, a liquid outer core
would explain why S waves aren’t present there.
The presence of S waves in the inner core thus suggests that it is solid. These waves cannot
be the same waves generated from the surface, nor from outside the outer core which acts as
a barrier. Thus, these must be generated either within the inner core or from the inner-outer
core interface, where there may be moving liquid material.

(ii) In a zone where the wave velocities and density vary smoothly (such as in the bulk of the
lower mantle or within the outer core), any abrupt changes in material composition would
be reflected as an abrupt velocity change. The smooth density increase with depth follows
naturally due to the weight of the layers above.
The wave velocities depend on this density too, as

vP =

√
κ+ 4µ/3

ρ
, vS =

√
µ

ρ
,

where κ is the bulk modulus of the material, µ is the shear modulus, and ρ is the density.
This would seem to indicate that wave velocity and density ought to have opposing trends –
however, the shear modulus µ and bulk modulus κ also increase with depth and have a density
dependence, which outweighs the denominator.
The wave velocities can be seen to vary smoothly with physical properties – thus, discontinu-
ities in velocity mark discontinuities in these physical properties.

(iii) Such a large jump at the D′′ layer is unlikely to arise purely from a change in composition,
where gradual movement of material would perhaps smooth things out. The high density
indicates the presence of metal such as iron.

(iv) Again, a smooth velocity and density change indicates a gradual change in the physical prop-
erties of the material in that zone. The fact that the S wave velocity drops more than the P
wave velocity indicates the presence of some amount of liquid. A complete liquid state would
obstruct the passage of S waves in that region. Instead, a partially melted zone would explain
the velocity drops.
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(v) The fact that the P waves are faster than S waves is evident from their velocity formulae,
which we can rearrange as

v2P − v2S =
κ+ µ/3

ρ
> 0.
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