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1.  Basic Definitions

1.1.  Convex Sets and Functions

Definition 1.1 (Convex Set).  We say that 𝒦 ⊆ ℝ𝑑 is convex if

𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝒦

for all 𝑥, 𝑦 ∈ 𝒦 and 𝜆 ∈ [0, 1].

*Department of Industrial Engineering and Operations Research (IEOR), Columbia University
†Department of Statistics, Columbia University

EEOR6616: Convex Optimization 1 Basic Definitions



Example 1.1.1.  All linear subspaces of ℝ𝑑 are convex sets.

Example 1.1.2.  Consider points 𝑥1, …, 𝑥𝑛 ∈ ℝ𝑑. Their convex hull, described by

conv(𝑥1, …, 𝑥𝑛) = {𝜆1𝑥1 + … + 𝜆𝑛𝑥𝑛 : 𝜆1, …, 𝜆𝑛 ≥ 0, ∑
𝑛

𝑖=1
𝜆𝑖 = 1},

is a convex set. In fact, it is the smallest convex set containing 𝑥1, …, 𝑥𝑛.

Definition 1.2 (Convex Function).  We say that 𝑓 : 𝒦 → ℝ is convex if 𝒦 is convex, and

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦)

for all 𝑥, 𝑦 ∈ 𝒦 and 𝜆 ∈ [0, 1].

Example 1.2.1.  The map 𝑥 ↦ 𝑥2 is convex.

Example 1.2.2.  Indicator functions of convex sets are convex. The indicator function of 𝒳 ⊆ ℝ𝑑 is
given by

𝐼𝒳 : ℝ𝑑 → ℝ, 𝑥 ↦ {0 if 𝑥 ∈ 𝒳
∞ if 𝑥 ∉ 𝒳.

Proposition 1.3 (Jensen's Inequality).  𝑓  is convex if and only if

𝑓(𝜆1𝑥1 + … + 𝜆𝑛𝑥𝑛) ≤ 𝜆1𝑓(𝑥1) + … + 𝜆𝑛𝑓(𝑥𝑛)

for all 𝑥1, …, 𝑥𝑛 ∈ 𝒦 and 𝜆1, …, 𝜆𝑛 ≥ 0 such that ∑𝑘 𝜆𝑘 = 1,

Definition 1.4 (Epigraph).  The epigraph of 𝑓 : 𝒦 → ℝ is defined as

epi(𝑓) = {(𝑥, 𝛼) ∈ 𝒦 × ℝ : 𝑓(𝑥) ≤ 𝛼}.

Remark.  The epigraph of 𝑓  is simply the region above the graph of 𝑓 ,

Γ(𝑓) = {(𝑥, 𝛼) ∈ 𝒦 × ℝ : 𝑓(𝑥) = 𝛼}.

Proposition 1.5.  𝑓  is convex if and only if epi(𝑓) is convex.

Proof.  (⟹) For (𝑥1, 𝛼1), (𝑥2, 𝛼2) ∈ epi(𝑓) and 𝜆 ∈ [0, 1], we have
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𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2)
≤ 𝜆𝛼1 + (1 − 𝜆)𝛼2.

(⟸) For 𝑥1, 𝑥2 ∈ 𝒦 and 𝜆 ∈ [0, 1], since (𝑥1, 𝑓(𝑥1)), (𝑥2, 𝑓(𝑥2)) ∈ epi(𝑓), we have

𝑓(𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝜆𝑓(𝑥1) + (1 − 𝜆)𝑓(𝑥2). □

From now on, we will always assume that 𝑓 : 𝒦 → ℝ is differentiable, unless stated otherwise. Under
this setting, we have a simpler characterization of convexity.

Proposition 1.6 (Gradient Inequality).  𝑓  is convex if and only if

𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓(𝑥)⊤(𝑦 − 𝑥)

for all 𝑥, 𝑦 ∈ 𝒦.

Proof.  (⟹) Note that for 𝑡 ∈ (0, 1), we may write

𝑓(𝑥) + 𝑓(𝑥 + 𝑡(𝑦 − 𝑥)) − 𝑓(𝑥)
𝑡

= 𝑓((1 − 𝑡)𝑥 + 𝑡𝑦) − (1 − 𝑡)𝑓(𝑥)
𝑡

≤ 𝑓(𝑦).

Taking the limit 𝑡 → 0 gives the desired result.

(⟸) Let 𝑥, 𝑦 ∈ 𝒦 and 𝜆 ∈ [0, 1]. Setting 𝑧 = 𝜆𝑥 + (1 − 𝜆)𝑦, we have

𝑓(𝑥) ≥ 𝑓(𝑧) + ∇𝑓(𝑧)⊤(𝑥 − 𝑧), 𝑓(𝑦) ≥ 𝑓(𝑧) + ∇𝑓(𝑧)⊤(𝑦 − 𝑧).

Combining these gives 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) ≥ 𝑓(𝑧). □

Remark.  This is often presented as

𝑓(𝑥) − 𝑓(𝑦) ≤ ∇𝑓(𝑥)⊤(𝑥 − 𝑦).

1.2.  Projections

Definition 1.7.  We say that 𝑧 is a projection of a point 𝑦 onto a set 𝒳 if 𝑧 ∈ 𝒳 and ‖𝑦 − 𝑧‖ ≤ ‖𝑦 − 𝑥‖
for all 𝑥 ∈ 𝒳.

In other words, 𝑧 is a projection of 𝑦 onto 𝒳 when 𝑧 ∈ arg min𝑥∈𝒳‖𝑦 − 𝑥‖. In general, such projections
of points need not exist! For instance, one can argue that a projection of 𝑦 ∉ 𝒳 onto 𝒳 cannot lie in the
interior of 𝒳: given 𝑧 ∈ 𝐵𝛿(𝑧) ⊆ int(𝒳), set 𝑧𝑡 = 𝑧 + 𝑡(𝑦 − 𝑧) ∈ 𝒳 with 𝑡 = 𝛿/(2‖𝑦 − 𝑧‖), whence
‖𝑦 − 𝑧𝑡‖ = (1 − 𝑡)‖𝑦 − 𝑧‖ < ‖𝑦 − 𝑧‖.

Example 1.7.1.  Consider the open unit disk 𝔻2 = {𝑥 ∈ ℝ2 : ‖𝑥‖ < 1} in ℝ2. Projections of points
outside 𝔻2 onto 𝔻2 do not exist.

In Euclidean spaces ℝ𝑑, we may observe that closedness of (nonempty) 𝒳 guarantees the existence of
a projection of 𝑦 ∈ ℝ𝑑 onto 𝒳. By picking some 𝑥0 ∈ 𝒳, we need only look at the compact set 𝒳 ∩
𝐵𝑟(𝑦) where 𝑟 = ‖𝑦 − 𝑥0‖, on which the continuous map 𝑥 ↦ ‖𝑦 − 𝑥‖ must attain its minimum.
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On the other hand, projections of points need not be unique.

Example 1.7.2.  Consider the unit circle 𝑆1 = {𝑥 ∈ ℝ2 : ‖𝑥‖ = 1} in ℝ2. Then, every point in 𝑆1 is a
projection of 0 ∈ ℝ2 onto 𝑆1.

The following theorem establishes the existence and uniqueness of projections onto closed convex sets
in any Hilbert space; we focus on Euclidean spaces ℝ𝑑 for simplicity.

Theorem 1.8 (Hilbert Projection).  Let 𝒦 ⊆ ℝ𝑑 be closed and convex. Then, for each 𝑦 ∈ ℝ𝑑, there exists
a unique projection of 𝑦 onto 𝒳.

Proof.  Set 𝛿 = inf𝑥∈𝒦‖𝑥 − 𝑦‖ and pick a sequence {𝑧𝑛} ⊂ 𝒦 such that ‖𝑧𝑛 − 𝑦‖ → 𝛿. Note that (𝑧𝑛 +
𝑧𝑚)/2 ∈ 𝒦; the parallelogram law gives

‖𝑧𝑛 − 𝑧𝑚‖2 = 2‖𝑧𝑛 − 𝑦‖2 + 2‖𝑧𝑚 − 𝑦‖2 − 4‖(𝑧𝑛 + 𝑧𝑚)/2 − 𝑦‖2

≤ 2‖𝑧𝑛 − 𝑦‖2 + 2‖𝑧𝑚 − 𝑦‖2 − 4𝛿2.

Since this goes to 0 as 𝑚, 𝑛 → ∞, {𝑧𝑛} is Cauchy and hence has a limit 𝑧 ∈ 𝒦. Furthermore, if 𝛿 =
‖𝑧′ − 𝑦‖ for some other 𝑧′ ∈ 𝒦, then

‖𝑧 − 𝑧′‖2 = 4(𝛿2 − ‖(𝑧 + 𝑧′)/2 − 𝑦‖)2 ≤ 0,

forcing 𝑧 = 𝑧′. □

Definition 1.9.  Let 𝒦 ⊆ ℝ𝑑 be closed and convex. The projection operator onto 𝒦 is defined by

Π𝒦 : ℝ𝑑 → 𝒦, 𝑦 ↦ arg min
𝑥∈𝒦

‖𝑥 − 𝑦‖.

Remark.  Theorem 1.8 guarantees that Π𝒦 is well defined; the minimizer of 𝑥 ↦ ‖𝑥 − 𝑦‖ on 𝒦 exists
and is unique.

Proposition 1.10 (Variational Inequality).  Let 𝑦 ∈ ℝ𝑑 and 𝑧 ∈ 𝒦 for closed convex 𝒦. Then, 𝑧 = Π𝒦(𝑦)
if and only if ⟨𝑧 − 𝑦, 𝑧 − 𝑥⟩ ≤ 0 for all 𝑥 ∈ 𝒦.

Proof.  (⟹) Let 𝑡 ∈ (0, 1), and 𝑧𝑡 = (1 − 𝑡)Π𝒦(𝑦) + 𝑡𝑥 ∈ 𝒦. Then,

‖𝑧 − 𝑦‖2 ≤ ‖𝑧𝑡 − 𝑦‖2 = ‖𝑧 − 𝑦 − 𝑡(𝑧 − 𝑥)‖2,

which simplifies to

−2⟨𝑧 − 𝑦, 𝑧 − 𝑥⟩ + 𝑡‖𝑧 − 𝑥‖2 ≥ 0.

Taking the limit 𝑡 → 0 gives the desired inequality.

(⟸) For 𝑥 ∈ 𝒦,

‖𝑦 − 𝑥‖2 = ‖𝑦 − 𝑧‖2 + ‖𝑧 − 𝑥‖2 − 2⟨𝑧 − 𝑦, 𝑧 − 𝑥⟩ ≥ ‖𝑦 − 𝑧‖2. □
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Lemma 1.11 (Pythagoras).  For all 𝑥 ∈ 𝒦 and 𝑦 ∈ ℝ𝑑,

‖Π𝒦(𝑦) − 𝑥‖2 ≤ ‖𝑦 − 𝑥‖2 − ‖𝑦 − Π𝒦(𝑦)‖2.

Proof.  It suffices to show that ⟨Π𝒦(𝑦) − 𝑦, Π𝒦(𝑦) − 𝑥⟩ ≤ 0 for all 𝑥 ∈ 𝒦, which holds via ProposiA
tion 1.10. □

Corollary 1.11.1.  For all 𝑥, 𝑦 ∈ ℝ𝑑,

‖Π𝒦(𝑥) − Π𝒦(𝑦)‖ ≤ ‖𝑥 − 𝑦‖.

1.3.  Normals

A very useful property of closed convex sets 𝒦 is that given a point 𝑤 ∉ 𝐾 , one can find a hyperplane
separating 𝑤 from 𝒦. In other words, there exists a continuous linear functional 𝑔 and a constant 𝑎
such that 𝑔(𝑥) < 𝑎 < 𝑔(𝑤) for all 𝑥 ∈ 𝒦.

Theorem 1.12 (Strict Separation).  Let 𝑤 ∉ 𝒦 for closed convex 𝒦. There exists 𝑣 ≠ 0 such that

sup
𝑥∈𝒦

⟨𝑣, 𝑥⟩ < ⟨𝑣, 𝑤⟩.

Proof.  Set 𝑣 = 𝑤 − Π𝒦(𝑤). Then, Proposition 1.10 gives

⟨𝑣, 𝑥 − (𝑤 − 𝑣)⟩ = ⟨𝑤 − Π𝒦(𝑤), 𝑥 − Π𝒦(𝑤)⟩ ≤ 0,

for all 𝑥 ∈ 𝒦, which rearranges into

⟨𝑣, 𝑥⟩ + ‖𝑣‖2 ≤ ⟨𝑣, 𝑤⟩. □

Definition 1.13 (Normal).  Let 𝑥 ∈ 𝒦 for closed convex 𝒦. We say that 𝑣 is normal to 𝒦 at 𝑥 if ⟨𝑣, 𝑦⟩ ≤
⟨𝑣, 𝑥⟩ for all 𝑦 ∈ 𝒦.

Definition 1.14 (Normal Cone).  Let 𝑥 ∈ 𝒦 for closed convex 𝒦. The normal cone 𝑁𝒦(𝑥) at 𝑥 is the
collection of normals to 𝒦 at 𝑥.

Note that if 𝑣 is normal to 𝒦 at 𝑥, so is 𝛼𝑣 for 𝛼 ≥ 0, hence 𝑁𝒦(𝑥) is indeed a cone; it is also convex.
Furthermore, 𝑁𝒦(𝑥) is nontrivial only when 𝑥 ∉ int(𝑋); if 𝑥 ∈ 𝐵𝛿(𝑥) ⊆ 𝒦, then for any 𝑣 with ‖𝑣‖ =
1, we have 𝑥 ± 𝛿

2𝑣 ∈ 𝐵𝛿(𝑥) ⊆ 𝒦, and

⟨𝑣, 𝑥 − 𝛿
2
𝑣⟩ = ⟨𝑣, 𝑥⟩ − 𝛿

2
< ⟨𝑣, 𝑥⟩ < ⟨𝑣, 𝑥⟩ + 𝛿

2
= ⟨𝑣, 𝑥 + 𝛿

2
𝑣⟩.

Thus, we need only look at normal cones at boundary points 𝑥 ∈ 𝜕𝒦. At these points, nonzero 𝑣 ∈
𝑁𝒦(𝑥) describe supporting hyperplanes to 𝒦 at 𝑥.
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Proposition 1.15.  Let 𝑥 ∈ 𝜕𝒦 for closed convex 𝐾 ⊆ ℝ𝑑. Then, 𝑁𝒦(𝑥) is nontrivial, i.e. there exists a
supporting hyperplane to 𝒦 at 𝑥.

Proof.  Pick a sequences {𝑥𝑛} ⊆ 𝒦𝑐 such that 𝑥𝑛 → 𝑥, and a corresponding sequence {𝑣𝑛} ⊂ 𝑆𝑑−1

of directions via Theorem 1.12, such that sup𝑦∈𝒦⟨𝑣𝑛, 𝑦⟩ < ⟨𝑣𝑛, 𝑥𝑛⟩. Using the compactness of 𝑆𝑑−1,
descend to a subsequence and relabel so that 𝑣𝑛 → 𝑣 ∈ 𝑆𝑑−1. Then, for 𝑦 ∈ 𝐾 , we have

⟨𝑣, 𝑦⟩ = lim
𝑛→∞

⟨𝑣𝑛, 𝑦⟩ ≤ lim
𝑛→∞

⟨𝑣𝑛, 𝑥𝑛⟩ = ⟨𝑣, 𝑥⟩. □

Proposition 1.16.  Let 𝑥 ∈ 𝒦 for closed convex 𝒦, and let 𝑣 ∈ 𝑁𝒦(𝑥). Then, Π𝒦(𝑥 + 𝛼𝑣) = 𝑥 for all
𝛼 ≥ 0.

Proof.  For all 𝑦 ∈ 𝒦, we have

⟨𝑥 − (𝑥 + 𝛼𝑣), 𝑥 − 𝑦⟩ = 𝛼⟨𝑣, 𝑦 − 𝑥⟩ ≤ 0,

whence 𝑥 = Π𝒦(𝑥 + 𝛼𝑣) by Proposition 1.10. □

2.  The Convex Optimization Problem

Definition 2.1 (Global Minimizer).  We say that 𝑥∗ is a global minimizer of 𝑓 : 𝒦 → ℝ if 𝑓(𝑥) ≥ 𝑓(𝑥∗)
for all 𝑥 ∈ 𝒦.

Definition 2.2 (Local Minimizer).  We say that 𝑥∗ is a local minimizer of 𝑓 : 𝒦 → ℝ if 𝑓(𝑥) ≥ 𝑓(𝑥∗)
for all 𝑥 ∈ 𝒰 for some neighborhood 𝒰 ⊆ 𝒦 of 𝑥∗.

Proposition 2.3.  Let 𝑥∗ ∈ int(𝒦) be a local minimizer of 𝑓 . Then, ∇𝑓(𝑥∗) = 0.

The optimization problem for convex 𝑓  on a convex set 𝒦 can be described as

min
𝑥∈𝒦

𝑓(𝑥). (ℳ𝒦)

In the special case 𝒦 = ℝ𝑑, this is

min
𝑥∈ℝ𝑑

𝑓(𝑥). (ℳℝ𝒹)

The convexity of 𝑓  allows us to characterize solutions of (ℳℝ𝒹) via its critical points.

Proposition 2.4.  Let 𝑓 : ℝ𝑑 → ℝ be convex. Then, 𝑥∗ ∈ ℝ𝑑 is a global minimizer of 𝑓  if and only if
∇𝑓(𝑥∗) = 0.

Proof.  Follows directly from Proposition 2.3 and Proposition 1.6. □
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Corollary 2.4.1.  Local minimizers of convex functions are global minimizers.

3.  Gradient Descent

Gradient descent algorithms for solving (ℳℝ𝒹) follow the iterative scheme

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑡∇𝑓(𝑥𝑡). (𝒢𝒟)

It is possible for (𝒢𝒟) to take our iterates 𝑥𝑡 outside 𝒦; we can rectify this using projections. Projected
gradient descent algorithms for solving (ℳ𝒦) follow the iterative scheme

𝑦𝑡+1 = 𝑥𝑡 − 𝜂𝑡∇𝑓(𝑥𝑡),

𝑥𝑡+1 = Π𝒦(𝑦𝑡+1).
(𝒫𝒢𝒟)

We can establish rates of convergence of (𝒢𝒟) and (𝒫𝒢𝒟) under certain regularity conditions on 𝑓 .

3.1.  𝐿-Lipschitz Functions

Definition 3.1 (𝐿ALipschitz).  We say that 𝑓 : 𝒦 → ℝ is 𝐿ALipschitz for some 𝐿 ≥ 0 if

|𝑓(𝑥) − 𝑓(𝑦)| ≤ 𝐿‖𝑥 − 𝑦‖

for all 𝑥, 𝑦 ∈ 𝒦.

Remark.  When 𝑓  is differentiable, 𝑓  is 𝐿ALipschitz if and only if ‖∇𝑓‖ ≤ 𝐿.

Theorem 3.2.  Let 𝑓  be convex and 𝐿-Lipschitz, 𝑥∗ ∈ 𝒦 be its global minimizer, and ‖𝑥1 − 𝑥∗‖ ≤ 𝑅.
Further let 𝑥1, …, 𝑥𝑇  be 𝑇  iterates of (𝒫𝒢𝒟) with 𝜂 = 𝑅/𝐿

√
𝑇 . Then,

𝑓( 1
𝑇

∑
𝑇

𝑡=1
𝑥𝑡) − 𝑓(𝑥∗) ≤ 𝑅𝐿√

𝑇
.

Proof.  Compute

𝑓( 1
𝑇

∑
𝑇

𝑡=1
𝑥𝑡) − 𝑓(𝑥∗) ≤ 1

𝑇
∑
𝑇

𝑡=1
𝑓(𝑥𝑡) − 𝑓(𝑥∗) (Proposition 1.3)

≤ 1
𝑇

∑
𝑇

𝑡=1
∇𝑓(𝑥𝑡)

⊤(𝑥𝑡 − 𝑥∗) (Proposition 1.6)

= 1
𝑇𝜂

∑
𝑇

𝑡=1
(𝑥𝑡 − 𝑦𝑡+1)

⊤(𝑥𝑡 − 𝑥∗)

= 1
2𝑇𝜂

∑
𝑇

𝑡=1
[‖𝑥𝑡 − 𝑦𝑡+1‖

2 + ‖𝑥𝑡 − 𝑥∗‖2 − ‖𝑦𝑡+1 − 𝑥∗‖2]
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= 𝜂
2
‖∇𝑓(𝑥𝑡)‖

2 + 1
2𝑇𝜂

∑
𝑇

𝑡=1
[‖𝑥𝑡 − 𝑥∗‖2 − ‖𝑦𝑡+1 − 𝑥∗‖2]

≤ 𝜂𝐿2

2
+ 1

2𝑇𝜂
∑
𝑇

𝑡=1
[‖𝑥𝑡 − 𝑥∗‖2 − ‖Π𝒦(𝑦𝑡+1)⏟⏟⏟⏟⏟

𝑥𝑡+1

− 𝑥∗‖2] (Lemma 1.11)

= 𝜂𝐿2

2
+ 1

2𝑇𝜂
[‖𝑥1 − 𝑥∗‖2 − ‖𝑥𝑇+1 − 𝑥∗‖2]

≤ 𝜂𝐿2

2
+ 𝑅2

2𝑇𝜂

= 𝑅𝐿√
𝑇

. □

3.2.  ℓ-smoothness

Definition 3.3 (ℓAsmoothness).  We say that 𝑓 : 𝒦 → ℝ is ℓAsmooth for some ℓ ≥ 0 if

‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖ ≤ ℓ‖𝑥 − 𝑦‖

for all 𝑥, 𝑦 ∈ 𝒦.

Lemma 3.4.  Let 𝑓 : 𝒦 → ℝ for convex 𝒦 be ℓ-smooth. Then,

|𝑓(𝑦) − 𝑓(𝑥) − ∇𝑓(𝑥)⊤(𝑦 − 𝑥)| ≤ ℓ
2
‖𝑦 − 𝑥‖2.

Proof.  Using the Fundamental Theorem of Calculus,

|𝑓(𝑦) − 𝑓(𝑥) − ∇𝑓(𝑥)⊤(𝑦 − 𝑥)| = |∫
1

0
(∇𝑓(𝑥 + 𝑡(𝑦 − 𝑥)) − ∇𝑓(𝑥))⊤(𝑦 − 𝑥) 𝑑𝑡|

≤ ∫
1

0
‖∇𝑓(𝑥 + 𝑡(𝑦 − 𝑥)) − ∇𝑓(𝑥)‖ · ‖𝑦 − 𝑥‖ 𝑑𝑡

≤ ∫
1

0
ℓ𝑡‖𝑦 − 𝑥‖ · ‖𝑦 − 𝑥‖ 𝑑𝑡

= ℓ
2
‖𝑦 − 𝑥‖2. □

When 𝑓  is convex, the norm on the left hand side is redundant, giving the estimate

0 ≤ 𝑓(𝑦) − 𝑓(𝑥) − ∇𝑓(𝑥)⊤(𝑦 − 𝑥) ≤ ℓ
2
‖𝑦 − 𝑥‖2.

In fact, we can use ℓAsmoothness to improve upon the estimate in Proposition 1.6.
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Lemma 3.5.  Let 𝑓  be convex and ℓ-smooth. Then,

𝑓(𝑥) − 𝑓(𝑦) ≤ ∇𝑓(𝑥)⊤(𝑥 − 𝑦) − 1
2ℓ

‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖2.

Proof.  Set 𝑧 = 𝑦 + (∇𝑓(𝑥) − ∇𝑓(𝑦))/ℓ. Using Proposition 1.6, Lemma 3.4,

𝑓(𝑥) − 𝑓(𝑦) = (𝑓(𝑥) − 𝑓(𝑧)) + (𝑓(𝑧) − 𝑓(𝑦))

≤ ∇𝑓(𝑥)⊤(𝑥 − 𝑧) + ∇𝑓(𝑦)⊤(𝑧 − 𝑦) + ℓ
2
‖𝑧 − 𝑦‖2

= ∇𝑓(𝑥)⊤(𝑥 − 𝑦) + (∇𝑓(𝑦) − ∇𝑓(𝑥))⊤(𝑧 − 𝑦) + ℓ
2
‖𝑧 − 𝑦‖2

= ∇𝑓(𝑥)⊤(𝑥 − 𝑦) − 1
ℓ
‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖2 + 1

2ℓ
‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖2

= ∇𝑓(𝑥)⊤(𝑥 − 𝑦) − 1
2ℓ

‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖2. □

Corollary 3.5.1.  Let 𝑓  be convex and ℓ-smooth. Then,

(∇𝑓(𝑥) − ∇𝑓(𝑦))⊤(𝑥 − 𝑦) ≥ 1
ℓ
‖∇𝑓(𝑥) − ∇𝑓(𝑦)‖2.

Theorem 3.6.  Let 𝑓  be convex and ℓ-smooth, 𝑥∗ ∈ ℝ𝑑 be its global minimizer. Further let {𝑥𝑡}𝑡∈ℕ be
iterates of (𝒢𝒟) with 𝜂 = 1/ℓ. Then,

‖𝑥𝑡+1 − 𝑥∗‖ ≤ ‖𝑥𝑡 − 𝑥∗‖

for all 𝑡 ∈ ℕ.

Proof.  Using ∇𝑓(𝑥∗) = 0 and Corollary 3.5.1,

‖𝑥𝑡+1 − 𝑥∗‖2 = ‖𝑥𝑡+1 − 𝑥𝑡‖
2 + 2(𝑥𝑡+1 − 𝑥𝑡)

⊤(𝑥𝑡 − 𝑥∗) + ‖𝑥𝑡 − 𝑥∗‖2

= 1
ℓ2 ‖∇𝑓(𝑥𝑡)‖

2 − 2
ℓ
∇𝑓(𝑥𝑡)

⊤(𝑥𝑡 − 𝑥∗) + ‖𝑥𝑡 − 𝑥∗‖2

≤ 1
ℓ2 ‖∇𝑓(𝑥𝑡)‖

2 − 2
ℓ2 ‖∇𝑓(𝑥𝑡)‖

2 + ‖𝑥𝑡 − 𝑥∗‖2

= − 1
ℓ2 ‖∇𝑓(𝑥𝑡)‖

2 + ‖𝑥𝑡 − 𝑥∗‖2

≤ ‖𝑥𝑡 − 𝑥∗‖2. □

Theorem 3.7.  Let 𝑓  be convex and ℓ-smooth, 𝑥∗ ∈ ℝ𝑑 be its global minimizer, and ‖𝑥1 − 𝑥∗‖ ≤ 𝑅.
Further let 𝑥1, …, 𝑥𝑇  be 𝑇  iterates of (𝒢𝒟) with 𝜂 = 1/ℓ. Then,

𝑓(𝑥𝑇 ) − 𝑓(𝑥∗) ≤ 2ℓ𝑅2

𝑇 − 1
.
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Proof.  Using Lemma 3.4, note that

𝑓(𝑥𝑡+1) − 𝑓(𝑥𝑡) ≤ ∇𝑓(𝑥𝑡)
⊤(𝑥𝑡+1 − 𝑥𝑡) + ℓ

2
‖𝑥𝑡+1 − 𝑥𝑡‖

2

= − 1
2ℓ

‖∇𝑓(𝑥𝑡)‖
2.

Setting 𝛿𝑡 = 𝑓(𝑥𝑡) − 𝑓(𝑥∗), this reads

𝛿𝑡+1 ≤ 𝛿𝑡 − 1
2ℓ

‖∇𝑓(𝑥)‖2.

Now,

𝛿𝑡 ≤ ∇𝑓(𝑥𝑡)
⊤(𝑥𝑡 − 𝑥∗) ≤ ‖∇𝑓(𝑥𝑡)‖‖𝑥𝑡 − 𝑥∗‖ ≤ ‖∇𝑓(𝑥𝑡)‖‖𝑥1 − 𝑥∗‖,

with the last inequality guaranteed by Theorem  3.6. Setting 𝑤 = 1/2ℓ‖𝑥1 − 𝑥∗‖2, this is
‖∇𝑓(𝑥𝑡)‖

2/2ℓ ≥ 𝑤𝛿2
𝑡 . Thus, 𝛿𝑡+1 ≤ 𝛿𝑡 − 𝑤𝛿2

𝑡 , which rearranges to

1
𝛿𝑡+1

− 1
𝛿𝑡

≥ 𝑤 𝛿𝑡
𝛿𝑡+1

≥ 𝑤.

Summing over 𝑡 gives 1/𝛿𝑇 ≥ 𝑤(𝑇 − 1), which is the desired estimate. □

Remark.  We have shown that

1
ℓ
‖∇𝑓(𝑥𝑡)‖

2 ≤ 𝑓(𝑥𝑡) − 𝑓(𝑥𝑡+1) ≤ 1
2ℓ

‖∇𝑓(𝑥𝑡)‖
2.

3.3.  𝛼-strong Convexity

Definition 3.8 (𝛼Astrong Convex Function).  We say that convex differentiable 𝑓  is 𝛼Astrongly convex
for 𝛼 ≥ 0 if

𝑓(𝑦) ≥ 𝑓(𝑥) + ∇𝑓(𝑥)⊤(𝑦 − 𝑥) + 𝛼
2

‖𝑦 − 𝑥‖2

for all 𝑥, 𝑦 ∈ 𝒦.

Remark.  This is often presented as

𝑓(𝑥) − 𝑓(𝑦) ≤ ∇𝑓(𝑥)⊤(𝑥 − 𝑦) − 𝛼
2

‖𝑥 − 𝑦‖2.

Thus, 𝛼Astrong convexity is a strengthening of the gradient inequality (Proposition 2.4).

Example 3.8.1.  All convex functions are ‘0Astrongly convex’.

We can improve upon Theorem 3.2 and Theorem 3.6 dramatically with this added assumption.
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Theorem 3.9.  Let 𝑓  be 𝛼-strongly convex and 𝐿-Lipschitz, and let 𝑥∗ ∈ 𝒦 be its global minimizer. Further
let 𝑥1, …, 𝑥𝑇  be 𝑇  iterates of (𝒫𝒢𝒟) with 𝜂𝑡 = 2/(𝛼(𝑡 + 1)). Then,

𝑓(∑
𝑇

𝑡=1

𝑡
𝑇 (𝑇 + 1)/2

𝑥𝑡) − 𝑓(𝑥∗) ≤ 2𝐿2

𝛼(𝑇 + 1)
.

Note that when 𝑓  is both 𝛼Astrongly convex and ℓAsmooth, we have

𝛼
2

‖𝑦 − 𝑥‖2 ≤ 𝑓(𝑦) − 𝑓(𝑥) − ∇𝑓(𝑥)⊤(𝑦 − 𝑥) ≤ ℓ
2
‖𝑦 − 𝑥‖2.

This also justifies that 𝛼 ≤ ℓ.

Lemma 3.10.  Let 𝑓  be 𝛼-strongly convex and ℓ-smooth, and let 𝑥+ = 𝑥 − 1
ℓ∇𝑓(𝑥). Then,

𝑓(𝑥+) − 𝑓(𝑦) ≤ ∇𝑓(𝑥)⊤(𝑥 − 𝑦) − 1
2ℓ

‖∇𝑓(𝑥)‖2 − 𝛼
2

‖𝑥 − 𝑦‖2.

Proof.  Write

𝑓(𝑥+) − 𝑓(𝑦) = (𝑓(𝑥+) − 𝑓(𝑥)) + (𝑓(𝑥) − 𝑓(𝑦))

≤ ∇𝑓(𝑥)⊤(𝑥+ − 𝑥) + ℓ
2
‖𝑥+ − 𝑥‖2 + ∇𝑓(𝑥)⊤(𝑥 − 𝑦) − 𝛼

2
‖𝑥 − 𝑦‖2

= −1
ℓ
‖∇𝑓(𝑥)‖2 + 1

2ℓ
‖∇𝑓(𝑥)‖2 + ∇𝑓(𝑥)⊤(𝑥 − 𝑦) − 𝛼

2
‖𝑥 − 𝑦‖2

= − 1
2ℓ

‖∇𝑓(𝑥)‖2 + ∇𝑓(𝑥)⊤(𝑥 − 𝑦) − 𝛼
2

‖𝑥 − 𝑦‖2 □

Theorem 3.11.  Let 𝑓  be 𝛼-strongly convex and ℓ-smooth, and let 𝑥∗ ∈ ℝ𝑑 be its global minimizer. Further
let {𝑥𝑡}𝑡∈ℕ be iterates of (𝒢𝒟) with 𝜂 = 1/ℓ. Then,

‖𝑥𝑡+1 − 𝑥∗‖2 ≤ 𝑒−𝑡𝛼/ℓ ‖𝑥1 − 𝑥∗‖2

for all 𝑡 ∈ ℕ.

Proof.  Write

‖𝑥𝑡+1 − 𝑥∗‖2 = ‖𝑥𝑡+1 − 𝑥𝑡‖
2 + ‖𝑥𝑡 − 𝑥∗‖2 + 2(𝑥𝑡+1 − 𝑥𝑡)

⊤(𝑥𝑡 − 𝑥∗)

= 1
ℓ2 ‖∇𝑓(𝑥𝑡)‖

2 + ‖𝑥𝑡 − 𝑥∗‖2 − 2
ℓ
∇𝑓(𝑥𝑡)

⊤(𝑥𝑡 − 𝑥∗)

≤ 1
ℓ2 ‖∇𝑓(𝑥𝑡)‖

2 + ‖𝑥𝑡 − 𝑥∗‖2

−2
ℓ
[𝑓(𝑥𝑡+1) − 𝑓(𝑥∗) + 1

2ℓ
‖∇𝑓(𝑥𝑡)‖

2 + 𝛼
2

‖𝑥𝑡 − 𝑥∗‖2] (Lemma 3.10)

≤ ‖𝑥𝑡 − 𝑥∗‖2 − 𝛼
ℓ
‖𝑥𝑡 − 𝑥∗‖2 (𝑓(𝑥𝑡+1) ≥ 𝑓(𝑥∗))
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= (1 − 𝛼
ℓ
) ‖𝑥𝑡 − 𝑥∗‖2.

Iterating and using 1 − 𝑠 ≤ 𝑒−𝑠, we have

‖𝑥𝑡+1 − 𝑥∗‖2 ≤ (1 − 𝛼
ℓ
)

𝑡
‖𝑥1 − 𝑥∗‖2 ≤ 𝑒−𝑡𝛼/ℓ ‖𝑥1 − 𝑥∗‖2. □

A version of the above still holds with regards to (𝒫𝒢𝒟).

The quantity 𝜅 = ℓ/𝛼 ≥ 1, called the conditional number, controls the rate of convergence of (𝒢𝒟).
Convergence is especially slow when 𝜅 is very high.

Example 3.11.1.  Let 𝑓(𝑥) = 1
2𝑥⊤𝐴𝑥 for positive definite 𝐴. Then, ℓ and 𝛼 are the largest and smallest

eigenvalues of 𝐴 respectively.

4.  Momentum-Based Gradient Descent

4.1.  Polyak’s Heavy Ball Method

Polyak’s heavy ball method follows the iterative scheme

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑡∇𝑓(𝑥𝑡) + 𝛽𝑡(𝑥𝑡 − 𝑥𝑡−1). (HB-𝒢𝒟)

Remark.  The (HB-𝒢𝒟) method can be viewed as a discretized version of the heavy ball flow

̈𝑥 + 𝛾 ̇𝑥 = −∇𝑓(𝑥).

Lemma 4.1.  Given 𝑀 ∈ ℝ𝑑×𝑑 and 𝜀 > 0, there exists a norm ‖ · ‖𝜀 such that ‖𝑀‖𝜀 ≤ 𝜌(𝑀) + 𝜀, where

𝜌(𝑀) = max{|𝜆1|, .., |𝜆𝑛|}

is the spectral radius of 𝑀 , and 𝜆1, …, 𝜆𝑛 are the eigenvalues of 𝑀 .

Remark.  Recall that every norm ‖ · ‖ on ℝ𝑑 naturally induces a matrix norm

‖𝑀‖ = sup{‖𝑀𝑥‖ : ‖𝑥‖ = 1}

on ℝ𝑑×𝑑. The spectral radius satisfies 𝜌(𝐴) ≤ ‖𝐴‖ for every natural matrix norm ‖ · ‖. The above lemma
shows that

𝜌(𝑀) = inf{‖𝑀‖ : ‖ · ‖  is a matrix norm}.
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Theorem 4.2.  Let 𝑓(𝑥) = 1
2𝑥⊤𝐴𝑥 for positive definite 𝐴 ∈ ℝ𝑑×𝑑, and let {𝑥𝑡}𝑡∈ℕ be iterates of

(HB-𝒢𝒟) with

𝜂 = ( 2√
ℓ +

√
𝛼

)
2

, 𝛽 = (
√

𝜅 − 1√
𝜅 + 1

)
2

, 𝜅 = ℓ
𝛼

,

where ℓ, 𝛼 are the largest and smallest eigenvalues of 𝐴. Then, for every 𝜀 > 0, there exists a norm ‖ · ‖𝜀
such that

‖(𝑥𝑡+1
𝑥𝑡

)‖
𝜀

≤ (√𝛽 + 𝜀)
𝑡
‖(𝑥1

𝑥0
)‖

𝜀

for all 𝑡 ∈ ℕ.

Proof.  Note that ∇𝑓(𝑥) = 𝐴𝑥, so the (HB-𝒢𝒟) updates read

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝐴𝑥𝑡 + 𝛽(𝑥𝑡 − 𝑥𝑡−1) = ((1 + 𝛽)𝐼𝑑 − 𝜂𝐴)𝑥𝑡 − 𝛽𝑥𝑡−1,

which can be rewritten as

(𝑥𝑡+1
𝑥𝑡

) = ((1 + 𝛽)𝐼𝑑 − 𝜂𝐴
𝐼𝑑

−𝛽𝐼𝑑
0 )( 𝑥𝑡

𝑥𝑡−1
).

Notate this as

𝑋𝑡+1 = 𝐵𝑋𝑡 = 𝐵𝑡𝑋1.

Since ∏𝑗|𝜈𝑗| = | det(𝐵)| = 𝛽𝑑 for eigenvalues {𝜈𝑗}2𝑑
𝑗=1 of 𝐵, we must have 𝜌(𝐵) = max𝑗|𝜈𝑗| ≥

√
𝛽.

The eigenvalue equation for 𝐵 reads

𝐵(𝑦
𝑧) = ((1 + 𝛽)𝑦 − 𝜂𝐴𝑦 − 𝛽𝑧

𝑦 ) = 𝜈(𝑦
𝑧) ⟺ {𝜂𝜈𝐴𝑧 = (𝛽 + (1 + 𝛽)𝜈 − 𝜈2)𝑧

𝑦 = 𝜈𝑧 .

Thus, the eigenvalues {𝜆𝑖}𝑑
𝑖=1 of 𝐴 and {𝜈2𝑖−1, 𝜈2𝑖}𝑑

𝑖=1 of 𝐵 are related via 𝜂𝜆𝜈 = 𝛽 + (1 + 𝛽)𝜈 −
𝜈2, or

𝜈2𝑖−1,2𝑖 = 1
2
(1 + 𝛽 − 𝜂𝜆𝑖 ± √(1 + 𝛽 − 𝜂𝜆𝑖)

2 − 4𝛽).

Note that when Δ𝑖 = (1 + 𝛽 − 𝜂𝜆𝑖)
2 − 4𝛽 ≤ 0, we have |𝜈2𝑖−1| = |𝜈2𝑖| =

√
𝛽. Thus, for 𝜌(𝐵) to

achieve the lower bound 
√

𝛽, we need (1 −
√

𝛽)2 ≤ 𝜂𝜆𝑖 ≤ (1 +
√

𝛽)2 for all 𝑖, which holds when

(1 − √𝛽)
2

≤ 𝜂𝛼 ≤ 𝜂ℓ ≤ (1 + √𝛽)
2
.

Plugging in our choice of 𝜂, 𝛽, this is indeed true.

We now have 𝜌(𝐵) =
√

𝛽. Pick a norm ‖ · ‖𝜀 such that ‖𝐵‖𝜀 ≤
√

𝛽 + 𝜀 using Lemma 4.1, whence

‖𝑋𝑡+1‖𝜀
≤ ‖𝐵𝑡‖𝜀‖𝑋1‖𝜀 ≤ (√𝛽 + 𝜀)

𝑡
‖𝑋1‖𝜀. □

Remark.  Given 𝑓(𝑥) = 1
2(𝑥 − 𝑥∗)⊤𝐴(𝑥 − 𝑥∗) for positive definite, symmetric 𝐴, set 𝑦 = 𝑃(𝑥 − 𝑥∗)

where 𝐴 = 𝑃⊤Λ𝑃  is the diagonalization of 𝐴. Minimizing 𝑓  is now equivalent to minimizing 𝑔(𝑦) =
𝑦⊤Λ𝑦.
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4.2.  Nesterov’s Accelerated Gradient Descent

Nesterov’s accelerated gradient descent follows the iterative scheme

𝑦𝑡 = 𝑥𝑡 + 𝛽𝑡(𝑥𝑡 − 𝑥𝑡−1),
𝑥𝑡+1 = 𝑦𝑡 − 𝜂𝑡∇𝑓(𝑦𝑡).

(N-𝒜𝒢𝒟)

Theorem 4.3.  Let 𝑓  be 𝛼-strongly convex and ℓ-smooth, and let 𝑥∗ be its global minimizer. Further let
{𝑥𝑡}𝑡∈ℕ be iterates of (N-𝒜𝒢𝒟) with

𝜂 = 1
ℓ
, 𝛽 =

√
𝜅 − 1√
𝜅 + 1

, 𝜅 = ℓ
𝛼

.

Then,

𝑓(𝑥𝑡) − 𝑓(𝑥∗) ≤ (1 − 1√
𝜅

)
𝑡

(𝑙 + 𝑚
2

) ‖𝑥0 − 𝑥∗‖2

for all 𝑡 ∈ ℕ.

Theorem 4.4.  Let 𝑓  be convex and ℓ-smooth, 𝑥∗ be its global minimizer, and ‖𝑥0 − 𝑥∗‖ ≤ 𝑅. Further let
𝑥1, …, 𝑥𝑇  be 𝑇  iterates of (N-𝒜𝒢𝒟) with

𝜂 = 1
ℓ
, 𝜆𝑡+1 = 1 + √1 + 4𝜆2

𝑡
2

, 𝛽𝑡+1 = 𝜆𝑡 − 1
𝜆𝑡+1

,

where 𝜆0 = 𝛽0 = 0. Then,

𝑓(𝑥𝑇 ) − 𝑓(𝑥∗) ≤ 2ℓ𝑅2

𝑇 2 .

5.  Subdifferentials

Definition 5.1 (Subdifferential).  Let 𝑓 : 𝒦 → ℝ be convex. The subdifferential of 𝑓  at 𝑥 ∈ 𝒦 is the
collection of all directions 𝑣 such that

𝑓(𝑦) ≥ 𝑓(𝑥) + 𝑣⊤(𝑦 − 𝑥)

for all 𝑦 ∈ 𝒦, and is denoted 𝜕𝑓(𝑥).

Compare with the gradient inequality (Proposition 1.6) for differentiable convex 𝑓 .
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Example 5.1.1.  Consider 𝑓 : ℝ → ℝ, 𝑥 ↦ |𝑥|. Then,

𝜕𝑓(𝑥) =
{{
{
{{{−1} if 𝑥 < 0

[−1, 1] if 𝑥 = 0
{+1} if 𝑥 > 0

Example 5.1.2.  Consider 𝑓 : ℝ𝑑 → ℝ, 𝑥 ↦ ‖𝑥‖1 = ∑𝑑
𝑖=1|𝑥𝑖|. Then,

𝜕𝑓(𝑥) = {𝑣 : 𝑣𝑖 ∈ 𝜕|𝑥𝑖| for all 1 ≤ 𝑖 ≤ 𝑑}.

Example 5.1.3.  Let 𝒦 be closed and convex. The subdifferential of the indicator function 𝐼𝒦 at 𝑥 ∈
𝒦 is the normal cone 𝑁𝒦(𝑥).

It is clear that the subdifferential 𝜕𝑓(𝑥) is closed and convex. Showing that it is nontrivial requires
more work.

Proposition 5.2.  Let 𝑓 : 𝒦 → ℝ be convex. Then, 𝜕𝑓(𝑥) is nonempty for all 𝑥 ∈ ri(𝒦).

Proof.  Note that epi(𝑓) is convex via Proposition  1.5. Use Proposition  1.15 to find a supporting
hyperplane to epi(𝑓) at (𝑥⊤ 𝑓(𝑥))⊤, i.e. (𝑣⊤ 𝑠)⊤ ≠ 0 such that for all (𝑦⊤ 𝛼)⊤ ∈ epi(𝑓),

𝑣⊤(𝑦 − 𝑥) + 𝑠(𝛼 − 𝑓(𝑥)) ≤ 0.

By considering 𝑦 = 𝑥 and 𝛼 > 𝑓(𝑥), we must have 𝑠 ≤ 0. If 𝑠 = 0, we would need 𝑣⊤(𝑦 − 𝑥) ≤ 0 for
all 𝑦 ∈ 𝒦, which would force 𝑣 = 0 since 𝑥 ∈ ri(𝒦). Thus, 𝑠 < 0; putting 𝛼 = 𝑓(𝑦), we have

𝑓(𝑦) ≥ 𝑓(𝑥) − 𝑣⊤

𝑠
(𝑦 − 𝑥),

whence −𝑣⊤/𝑠 ∈ 𝜕𝑓(𝑥). □

The next result follows immediately from the definition of the subdifferential; compare this with
Proposition 2.4.

Proposition 5.3.  Let 𝑓 : 𝒦 → ℝ be convex. Then, 𝑥∗ ∈ 𝒦 is a global minimizer of 𝑓  if and only if
0 ∈ 𝜕𝑓(𝑥∗).

When 𝑓  is differentiable at 𝑥 ∈ int(𝒳), the subdifferential reduces to the usual gradient, with 𝜕𝑓(𝑥) =
{∇𝑓(𝑥)}. Indeed, Proposition  1.6 shows that ∇𝑓(𝑥) ∈ 𝜕𝑓(𝑥). To check that there are no other
elements, pick 𝑣 ∈ 𝜕𝑓(𝑥), and note that for 𝜆 ≥ 0,

𝑣⊤𝑢 ≤ 𝑓(𝑥 + 𝜆𝑢) − 𝑓(𝑥)
𝜆

→ ∇𝑓(𝑥)⊤𝑢 as 𝜆 → 0,

hence (∇𝑓(𝑥) − 𝑣)⊤𝑢 ≥ 0 for all directions 𝑢. This forces 𝑣 = ∇𝑓(𝑥).

The converse of the above result also holds, in the following form.
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Theorem 5.4.  Let 𝑓 : 𝒦 → ℝ be convex and 𝑥 ∈ int(𝒦). If 𝑓  is differentiable at 𝑥, then 𝜕𝑓(𝑥) =
{∇𝑓(𝑥)}. Conversely, if 𝜕𝑓(𝑥) = {𝑣}, then 𝑓  is differentiable at 𝑥 with ∇𝑓(𝑥) = 𝑣.

Proof.  See [1, Theorem 25.1]. □

Example 5.4.1.  Let 𝑓1, 𝑓2 be convex and differentiable, and let 𝑓 = max{𝑓1, 𝑓2}. At points 𝑥 where
𝑓1(𝑥) ≠ 𝑓2(𝑥), we have 𝜕𝑓(𝑥) = {∇𝑓(𝑥)}. Otherwise, 𝜕𝑓(𝑥) = conv(∇𝑓1(𝑥), ∇𝑓2(𝑥)).

Lemma 5.5.

1. 𝜕(𝛼𝑓) = 𝛼 (𝜕𝑓) for 𝛼 > 0.
2. 𝜕(𝑓1 + 𝑓2) = 𝜕𝑓1 + 𝜕𝑓2.
3. 𝜕𝑔(𝑥) = 𝐴⊤𝜕𝑓(𝐴𝑥 + 𝑏) for 𝑔(𝑥) = 𝑓(𝐴𝑥 + 𝑏).

Lemma 5.6.  Let 𝑓 = max{𝑓1, …, 𝑓𝑛}. Then,

𝜕𝑓(𝑥) = conv
(
(( ⋃

𝑖:𝑓(𝑥)=𝑓𝑖(𝑥)
𝜕𝑓𝑖(𝑥)

)
))

5.1.  Subgradient Descent

The subgradient descent algorithm follows the iterative scheme

𝑥𝑡+1 = 𝑥𝑡 − 𝜂𝑡𝑣𝑡, 𝑣𝑡 ∈ 𝜕𝑓(𝑥𝑡). (𝒮𝒢𝒟)

Theorem 5.7.  Let 𝑓  be convex and 𝐿-Lipschitz, 𝑥∗ be its global minimizer, and ‖𝑥1 − 𝑥∗‖ ≤ 𝑅. Further
let 𝑥1, …, 𝑥𝑇  be 𝑇  iterates of (𝒮𝒢𝒟). Then,

min
1≤𝑡≤𝑇

𝑓(𝑥𝑡) − 𝑓(𝑥∗) ≤
𝑅2 + 𝐿2 ∑𝑇

𝑡=1 𝜂2
𝑡

2 ∑𝑇
𝑡=1 𝜂𝑡

.

Proof.  Write

‖𝑥𝑡+1 − 𝑥∗‖ = ‖𝑥𝑡 − 𝑥∗‖2 − 2𝜂𝑡𝑣⊤
𝑡 (𝑥𝑡 − 𝑥∗) + 𝜂2

𝑡 ‖𝑣2
𝑡 ‖

≤ ‖𝑥𝑡 − 𝑥∗‖2 − 2𝜂𝑡(𝑓(𝑥𝑡) − 𝑓(𝑥∗)) + 𝜂2
𝑡 𝐿2.

This gives

2(∑
𝑇

𝑡=1
𝜂𝑡)( min

1≤𝑡≤𝑇
𝑓(𝑥𝑡) − 𝑓(𝑥∗)) ≤ ∑

𝑇

𝑡=1
2𝜂𝑡(𝑓(𝑥𝑡) − 𝑓(𝑥∗))

≤ ‖𝑥1 − 𝑥∗‖2 − ‖𝑥𝑇+1 − 𝑥∗‖2 + ∑
𝑇

𝑡=1
𝜂2

𝑡 𝐿2

EEOR6616: Convex Optimization 16 Subdifferentials



≤ 𝑅2 + 𝐿2 ∑
𝑇

𝑡=1
𝜂2

𝑡 . □

Remark.  We would like ∑𝑡 𝜂𝑡 → ∞ while ∑𝑡 𝜂2
𝑡 < ∞; this is achieved by step sizes of the form

𝜂𝑡 = 1/𝑡.

6.  Exponential Gradient Descent

Consider the standard 𝑑Asimplex

Δ𝑑 = {𝑥 ∈ ℝ𝑑 : ∑
𝑑

𝑖=1
𝑥𝑖 = 1, 𝑥𝑖 ≥ 0 for all 1 ≤ 𝑖 ≤ 𝑑}.

Members of Δ𝑑 can be naturally identified with discrete probability distributions on {1, …, 𝑘}. Given
convex 𝑓 , we examine the optimization problem

min
𝑥∈Δ𝑑

𝑓(𝑥). (ℳΔ𝑑)

The exponential gradient descent algorithm follows the iterative scheme

𝑧(𝑡) = ∑
𝑑

𝑖=1
𝑥(𝑡)

𝑖 𝑒−𝜂∇𝑓(𝑥(𝑡))𝑖 ,

𝑥(𝑡+1)
𝑖 = 1

𝑧(𝑡) 𝑥(𝑡)
𝑖 𝑒−𝜂∇𝑓(𝑥(𝑡))𝑖

(ℰ𝒢𝒟)

Since we are effectively dealing with probability distributions, we will use the KullbackALeibler diverA
gence instead of a Euclidean norm to describe convergence in Δ𝑑.

Definition 6.1 (KullbackALeibler Divergence).  The KullbackALeibler (KL) divergence of 𝑝 ∈ Δ𝑑 with
respect to 𝑞 ∈ Δ𝑑 is defined by

KL(𝑝 ‖ 𝑞) = 𝔼𝑝[log(𝑝
𝑞
)] = ∑

𝑑

𝑖=1
𝑝𝑖 log(𝑝𝑖

𝑞𝑖
).

Note that for any 𝑥∗ ∈ Δ𝑑, the concavity of the logarithm gives

KL(𝑥∗ ‖ 1
𝑑
𝟏) = ∑

𝑑

𝑖=1
𝑥∗

𝑖 log(𝑥∗
𝑖 · 𝑑) ≤ log(∑

𝑑

𝑖=1
(𝑥∗

𝑖 )
2𝑑) ≤ log(𝑑).

This is often useful in bounding the ‘diameter’ of Δ𝑑.

Lemma 6.2.  For iterates of (ℰ𝒢𝒟),

KL(𝑥∗ ‖ 𝑥(𝑡)) − KL(𝑥∗ ‖ 𝑥(𝑡+1)) = −𝜂∇𝑓(𝑥(𝑡))⊤𝑥∗ − log(𝑧(𝑡)).

EEOR6616: Convex Optimization 17 Exponential Gradient Descent



Theorem 6.3.  Let 𝑓  be convex such that ‖∇𝑓‖∞ ≤ ℓ on Δ𝑑, and let 𝑥∗ ∈ 𝒦 be its global minimizer.
Further let 𝑥(1), …, 𝑥(𝑇 ) be 𝑇  iterates of (ℰ𝒢𝒟) with

𝜂 = 1
ℓ
√log(𝑑)

𝑇
, 𝑥(1) = 1

𝑑
𝟏.

Then,

𝑓( 1
𝑇

∑
𝑇

𝑡=1
𝑥(𝑡)) − 𝑓(𝑥∗) ≤ 2ℓ√log(𝑑)

𝑇
.

Proof.  It will suffice to show that

∑
𝑇

𝑡=1
∇𝑓(𝑥(𝑡))⊤(𝑥(𝑡) − 𝑥∗) ≤

KL(𝑥∗ ‖ 𝑥(1))
𝜂

+ 𝜂2ℓ𝑇 ,

from which the result will follow using Proposition 1.3 and Proposition 1.6, much like in the proof
of Theorem 3.2. Indeed, checking that 𝑒−𝑥 ≤ 1 + 𝑥 + 𝑥2 for 𝑥 ≤ 1 and noting that 𝜂‖∇𝑓‖∞ ≤ 1 for
sufficiently large 𝑇 ,

log(𝑧(𝑡)) = log(∑
𝑑

𝑖=1
𝑥(𝑡)

𝑖 𝑒−𝜂(∇𝑓(𝑥(𝑡)))
𝑖)

≤ log(∑
𝑑

𝑖=1
𝑥(𝑡)

𝑖 (1 − 𝜂∇𝑓(𝑥(𝑡))
𝑖
+ 𝜂2∇𝑓(𝑥(𝑡))2

𝑖
))

= log(1 − 𝜂∇𝑓(𝑥(𝑡))⊤𝑥(𝑡) + ∑
𝑑

𝑖=1
𝜂2∇𝑓(𝑥(𝑡))2

𝑖
𝑥(𝑡)

𝑖 )

≤ log(1 − 𝜂∇𝑓(𝑥(𝑡))⊤𝑥(𝑡) + 𝜂2ℓ2)

≤ −𝜂∇𝑓(𝑥(𝑡))⊤𝑥(𝑡) + 𝜂2ℓ2.

Thus, by Lemma 6.2,

𝜂∇𝑓(𝑥(𝑡))⊤(𝑥(𝑡) − 𝑥∗) − 𝜂2ℓ2 ≤ KL(𝑥∗ ‖ 𝑥(𝑡)) − KL(𝑥∗ ‖ 𝑥(𝑡+1)).

Summing over 𝑡 and rearranging gives the desired result. □
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