The Three Classical Problems

An Introduction to Constructible Numbers

Satvik Saha 25 February, 2023

Department of Mathematics and Statistics, Indian Institute of Science Education and Research, Kolkata

- 1. Angle trisection. $\pi/9$
- 2. Doubling the cube. $\sqrt[3]{2}$
- 3. Squaring the circle. $\sqrt{\pi}$

Figure 1: Archimedes' method of trisecting an angle.

- 1. [The Rules of the Game](#page-4-0)
- 2. [The Language of Field Extensions](#page-12-0)
- 3. [The Constructible Number Theorem](#page-20-0)
- 4. [Bending the Rules](#page-29-0)

[The Rules of the Game](#page-4-0)

- 1. A line can be drawn through any two constructed points. $L(\alpha, \beta)$
- 2. A circle can be drawn centred at any constructed point, and with any previously constructed length as radius. $C(\gamma, R)$

The intersection points of constructed lines and circles are added to the collection of constructed points.

Figure 2: Any angle can be bisected.

Figure 3: A perpendicular can be dropped onto a line from any point, and a parallel line can be drawn through the point.

Figure 4: Any two lengths can be multiplied together or divided, via $DB = EC/AC$ with $AB = 1$.

Figure 5: The square root of any length can be constructed, via $AB = EB^2$ with $BC = 1$.

Start by marking the points 0 and 1 on the complex plane. A number $\alpha \in \mathbb{C}$ is said to be constructible if and only if it can be constructed via straightedge and compass in finitely many steps.

Remark

If α is constructible, so are $-\alpha$, $\overline{\alpha}$, $i\alpha$, $|\alpha|$, $\sqrt{\alpha}$, Re(α), Im(α).

Constructible numbers form a field.

Proof

If α and β are constructible, so are $\alpha \pm \beta$, $\alpha\beta$, α/β .

Remark

The field of constructible numbers contains Q, and is contained within C.

[The Language of Field Extensions](#page-12-0)

Let *F*, *K* be fields with $F \subset K$. We say that K/F is a field extension of *F*, also denoted $F \hookrightarrow K$.

With this, *K* can be seen as an *F*-vector space. Define

 $[K : F] = \dim_F(K)$.

We say that *K*/*F* is a *finite extension* if [*K* : *F*] is finite.

Let K/F be a field extension. Suppose that $\alpha \in K \setminus F$. Then, we define *F*(α) to be the smallest subfield of *K* containing both *F* and α .

$$
F(\alpha) = \left\{ \frac{p(\alpha)}{q(\alpha)} : p, q \in F[x], q(\alpha) \neq 0 \right\}.
$$

We say that α is *algebraic* over *F* when $f(\alpha) = 0$ for some polynomial $f \in F[x]$.

If *f* is monic and of minimal degree, then *f* is called the (unique) *minimal polynomial* of α.

Examples

The minimal polynomial of $\sqrt{2}$ over $\mathbb Q$ is x^2-2 .

The minimal polynomial of $\sqrt[3]{2}$ over $\mathbb Q$ is $x^3-2.$

The minimal polynomial of $cos(\pi/9)$ over $\mathbb Q$ is $x^3 - 3x/4 - 1/8$.

If α is algebraic over *F*, then

$$
F(\alpha) = \{p(\alpha) : p \in F[x]\} = F[\alpha].
$$

It follows that $[F(\alpha) : F]$ is precisely the degree of the minimal polynomial of α over *F*.

Examples

$$
[\mathbb{Q}(\sqrt{2}):\mathbb{Q}] = 2. \qquad [\mathbb{Q}(\cos(\pi/9)):\mathbb{Q}] = 3.
$$

Proof

The numbers $\{1,\alpha,\alpha^2,\ldots,\alpha^{n-1}\}$ form a basis of $F(\alpha).$

Let *K*/*F* be a field extension. Suppose that $\alpha_1, \ldots, \alpha_k \in K \setminus F$. Then, we define $F(\alpha_1,\ldots,\alpha_k)$ to be the smallest subfield of κ containing F and all α_1,\ldots,α_k .

$$
F(\alpha_1,\ldots,\alpha_k)=F(\alpha_1,\ldots,\alpha_\ell)(\alpha_{\ell+1},\ldots,\alpha_k)
$$

= $F(\alpha_1)(\alpha_2)\ldots(\alpha_k).$

Tower Lemma

Let *K*/*F* and *L*/*K* be finite field extensions. Then, *L*/*F* is a finite field extension, with

 $[L : F] = [L : K][K : F].$

Example

$$
[\mathbb{Q}(\sqrt[3]{2}, \sqrt{3}) : \mathbb{Q}] = [\mathbb{Q}(\sqrt[3]{2}, \sqrt{3}) : \mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}) : \mathbb{Q}]
$$

= 3 × 2 = 6.

Proof

If $\{\alpha_1, \ldots, \alpha_n\}$ is a basis of K/F and $\{\beta_1, \ldots, \beta_m\}$ is a basis of L/K , then $\{\alpha_1\beta_1,\ldots,\alpha_i\beta_j,\ldots,\alpha_n\beta_m\}$ is a basis of $L/F.$

Constructible numbers form a field $\mathscr C$, with

 $\mathbb{Q}(i) \subseteq \mathscr{C} \subseteq \mathbb{C}$.

Remark

If α is constructible, then so is $\sqrt{\alpha}$. Thus, $\mathscr C$ is a *quadratically closed field* – in particular, $\mathcal C$ is the *quadratic closure* of $\mathbb Q$.

[The Constructible Number Theorem](#page-20-0)

If a number $\alpha \in \mathbb{C}$ is constructible, then $[\mathbb{Q}(\alpha) : \mathbb{Q}] = 2^n$ for some integer *n*.

Equivalently, the degree of the minimal polynomial of α over $\mathbb Q$ must be a power of 2.

Example

The number $cos(\pi/9)$, hence the angle $\pi/9$, is not constructible. The number $\sqrt[3]{2}$ is not constructible.

The number $\sqrt{\pi}$ is not even algebraic!

If α lies at the intersection of some lines *L*(β*ⁱ* , δ*i*) and/or circles $C(\gamma_i, R_i)$ for some $\beta_i, \delta_i, \gamma_i, R_i \in F$ where the field $F \supseteq \mathbb{Q}$ is closed under conjugation, then

 $[F(\alpha) : F] < 2.$

In other words, there exist $\xi, \zeta \in F$ such that

$$
\alpha^2 - 2\xi\alpha + \zeta = 0 \iff \alpha = \xi \pm \sqrt{\xi^2 - \zeta}.
$$

The lines $\beta_i + (\delta_i - \beta_i)x \equiv \beta_i + \gamma_i x$ intersect at

$$
\beta_1+\gamma_1\frac{v_2(s_2-s_1)+u_2(t_1-t_2)}{u_1v_2-u_2v_1},
$$

where $\beta_i = s_i + it_i$, $\gamma_i = u_i + iv_i$.

Proof

Solve the system

 $s_1 + u_1x_1 = s_2 + u_2x_2$, $t_1 + v_1x_1 = t_2 + v_2x_2$.

The line $\beta + \delta x$ and the circle $|z - \gamma|^2 = R^2$ intersect at

β + δ*x*

where *x* is a real root of the quadratic

$$
|\delta|^2 x^2 + \left[(\beta - \gamma)\overline{\delta} + \overline{(\beta - \gamma)}\delta \right] x = R^2 - |\beta - \gamma|^2.
$$

Proof

Expand

$$
|(\beta - \gamma) + \delta x|^2 = R^2.
$$

The circles $|z - \gamma_i|^2 = R_i^2$ intersect at

x + *iy*

where

$$
2(u_1-u_2)x+2(v_1-v_2)y=R_2^2-R_1^2+|\gamma_1|^2-|\gamma_2|^2,
$$

and $\gamma_i = u_i + iv_i$.

This reduces to the previous case!

- Let α be constructible. There is a finite sequence of lines and circles such that the final diagram has α at some intersection.
- Look at the diagram at step *m*. There are finitely many intersections of lines and circles present, say α_1,\ldots,α_k . Thus, they all lie in the field $\mathbb{Q}(\alpha_1,\ldots,\alpha_k)=F_n$.

In the next step, a line or circle is drawn using these existing points, so any new intersection α_{k+i} must lie in $\mathit{F}_{m}(\alpha_{k+i})$ with $[F_m(\alpha_{k+i}): F_m] \leq 2.$

A number $\alpha \in \mathbb{C}$ is constructible *if and only if* α lies in an *iterated quadratic extension* of Q, i.e. there exists a tower of fields

$$
\mathbb{Q} = F_0 \hookrightarrow F_1 \hookrightarrow \cdots \hookrightarrow F_{n-1} \hookrightarrow F_n
$$

with each $[F_j:F_{j-1}]=2$ and $\alpha\in F_n$.

Proof of converse

Suppose that every number from *Fj*−¹ is constructible. If [*Fj* : *Fj*−¹] = 2, then *Fj*/*Fj*−¹ has a basis of the form {1, β}, where

$$
\beta^2 - 2\xi\beta + \zeta = 0 \iff \beta = \xi \pm \sqrt{\xi^2 - \zeta}
$$

for some $\xi,\zeta\in F_{j-1}.$ This means that β is constructible, since ${\mathscr C}$ is quadratically closed.

Consequently, every $\alpha \in F_j$ is constructible, since it can be written in the form $\alpha = \gamma + \delta \beta$ for $\gamma, \delta \in F_{j-1}.$

[Bending the Rules](#page-29-0)

Figure 6: Scarab with Elytra, *Opus 594*, Robert J. Lang.

Origami constructions: Huzita-Hatori

- 1. A line can be drawn through any two constructed points.
- 2. The perpendicular bisector of any two constructed points can be drawn.
- 3. The angle bisector of any constructed angle can be drawn.
- 4. The perpendicular to any constructed line through any constructed point can be drawn.
- 5. Given a constructed line *L* and constructed points α , β , a line through β that reflects α onto *L* can be drawn.
- 6. Given constructed lines L, *M* and constructed points α , β , a line that simultaneously reflects α onto *L* and β onto *M* can be drawn.

A number $\alpha \in \mathbb{C}$ is origami constructible *if and only if* there exists a tower of fields

$$
\mathbb{Q} = F_0 \hookrightarrow F_1 \hookrightarrow \cdots \hookrightarrow F_{n-1} \hookrightarrow F_n
$$

with each $[F_j:F_{j-1}]=2$ or 3, and $\alpha\in F_n.$

Remark

This means that $[Q(\alpha) : Q] = 2^{n}3^{m}$ for some integers *n*, *m*.

Figure 7: Using Origami to trisect the angle ∠*EAB*

David S. Dummit and Richard M. Foote. *Abstract Algebra*.

同 James King.

Origami-constructible numbers.

2004.