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Note: All logarithms are natural unless specified otherwise.

Problem 1 Is the activation energy Ea dependent on temperature? Qualitatively draw an Ea versus
temperature plot, i.e. represent how Ea changes with reaction temperature.

Solution The activation energy represents the extra energy required by reactant molecules to reach
an ‘activated complex’, a state where the formation and breaking of bonds along with restructuring of
the molecule takes place. Thus, it is the difference between the energy of such an activated complex EX

and the average energy of the reactant molecules EA.

The activation energy for the forward reaction Ea,1 is thus given by EX −EA, and that of the backward
reaction Ea,−1 is given by EX − EB , where EB is the average energy of the products. The heat of the
reaction ∆H = EB − EA = Ea,1 − Ea,−1 is given by the Van’t Hoff equation

d logK

dT
=

∆H

RT 2
.

Here, the equilibrium constant K = k/k−1 is the ratio of the rate constants for the forward and backward
reaactions. Separating the forward reaction, we have the relation

Ea = RT 2 d log k

dT
.

Integration and rearrangement yields the Arrhenius equation k = Ae−Ea/RT , or

log k = − Ea

RT
+ logA.

Another approach is to interpret Ea in terms of the Gibbs energy of activation, given by the relations
∆G‡ = −RT log k = ∆H‡ − T∆S‡, where ∆H‡ is the enthalpy of activation and ∆S‡ is the entropy of
activation for the forward reaction. Rearranging, we obtain the Eyring equation

log k = −∆H‡

RT
+

∆S‡

R
.

Comparing this with the Arrhenius equation gives Ea = ∆H‡ +RT .

For typical reaction temperatures, the activation energy Ea is assumed to be independent of temperature.
Empirically, a plot of log k vs 1/T is generally a straight line, with constant slope Ea/R. Although some
reactions do not show such a linear trend, this is generally corrected by introducing a pre-exponential
factor to the Arrhenius equation, such as k = ATme−Ea/RT keeping Ea constant.

Ea

T

log k

1/T

= −Ea/R
slope
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More precisely, the activation energy of a reaction may be regarded as the minimum amount of energy
required in the collision between reactant molecules, for the the initiation of the reaction. Increasing
the reaction temperature does increase the average kinetic energy of the reactant, however this does not
change the energy threshold, merely the number of molecules which have that energy. Hence, the impact
is purely on the kinetics of the reaction.

Problem 2 For a chemical reaction, the rate constant at 25 °C is doubled when the temperature is
raised to 45 °C. Determine the activation energy in kJmol−1.

Solution We use the Arrhenius equation,

k = Ae−Ea/RT .

Considering two different tempereature, T1 = 298K and T2 = 318K, we divide and take logarithms,
obtaining

log
k2
k1

= −Ea

R

[
1

T2
− 1

T1

]
.

Rearranging, and using k2/k1 = 2, we have

Ea =
T1T2

T2 − T1
R log 2 =

298× 318

318− 298
× 8.314× log 2 = 27.3 kJmol−1.

Problem 3 For a 10 °C rise in temperature, the rate constant doubles for reaction I and triples for
reaction II. If both reactions have the same pre-exponential factor, what is the ratio of their activation
energies?

Solution We again use the relation from the previous problem, setting the initial and final temper-
atures the same for both reactions. Thus,

Ea ∝ log
kf
ki

.

Thus, the ratio of activation energies (I over II) is simply log 2/ log 3 ≈ 0.631.

Problem 4 Explain mathematically how the value of the Michaelis-Menten constant km can be ob-
tained for an enzyme catalyzed reaction. What factors affect km?

Solution Consider a general enzyme catalyzed reaction, with substrate S, enzyme E and products
P.

E + S
k1
k2

[ES]*
k3 E + P

Here, [ES]* represents an intermediate complex. Since the amount of enzyme is much less than the
amount of substrate, we apply a steady state assumption on the intermediate complex, claiming that it’s
concentration becomes constant over time. Thus,

d[ES]∗

dt
= k1[E][S] − k2[ES]∗ − k3[ES]∗ = 0.

[ES]∗ =
k1

k2 + k3
[E][S].

Now, the concentration of the free enzyme can be obtained using conservation as [E] = [E]0 − [ES]∗.
Plugging this into the relation for [ES]*, and setting (k2 + k3)/k1 = km yields

km[ES]∗ = ([E]0 − [ES]∗)[S] =⇒ [ES]∗ =
[E]0[S]

km + [S]
.

The rate of the reaction is governed by the rate of formation of the product, i.e. R = k3[ES]∗. Thus,

R =
k3[E]0[S]

km + [S]
.
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This reaches its maximum values when [S] � km, i.e. Rmax = k3[E]0. We thus call k3 the turnover
rate, i.e. the rate of conversion of substrate molecules per molecule of enzyme.

For experimentally determining km, we use the reciprocal of the previous relation to obtain

1

R
=

km
k3[E]0[S]

+
1

k3[E]0
=

km
Rmax

(
1

[S]

)
+

1

Rmax
.

Thus, by varying the concentration of substrate, we obtain a plot of 1/R versus 1/[S] called a Lineweaver-
Burk plot. Clearly, this has a y-intercept of c = 1/Rmax and slope m = km/Rmax. The ratio m/c thus
yields the Michaelis-Menten constant km.

The factors which affect km are pH, temperature, ionic strength and the nature of the substrate.

Problem 5 How does the Michaelis-Menten equation explain why the rate of an enzyme catalyzed
reaction is proportional to the amount of enzyme?

Solution We use the previously derived Michaelis-Menten equation,

R =
k3[E]0[S]

km + [S]
.

Note that when the amount of substrate is very large (as it generally is), R → k3[E]0. Thus, R ∝ [E]0,
and is mostly independent of [S].

Essentially, when a large amount of substrate relative to the enzyme is present, the rate of formation
of the intermediate is limited by the amount of free enzyme present. Note that the total amount of
enzyme (free or bound in the intermediate complex) is conserved. Thus, the rate of formation of the
product, which is directly proportional to the amount of intermediate, is also proportional to the amount
of enzyme supplied.

Problem 6 For an enzyme catalyzed reaction, the Lineweaver-Burk plot resulted in a slope and in-
tercept values of 3.5× 10−2 s and 5× 104 mol−1 l s respectively. Estimate km and the turnover number
when the initial concentration of the enzyme is 2.5× 10−9 mol l−1.

Solution We simply use km = slope/intercept to obtain

km =
3.5× 10−2

5× 104
= 7× 10−7 mol l−1.

Note that the intercept is simply 1/Rmax. Now, the turnover number k3 is given by

k3 =
Rmax

[E]0
=

1

5× 104 × 2.5× 10−9
= 8000 s−1.

Problem 7 In the Lindemann mechanism of unimolecular reactions, what is the observed order at low
concentration?

Solution The Lindemann mechanism posits the following steps.

A + A
k1
k2

A + A*

A* k3 P

Here, A* is the activated reactant and P is the decomposition product(s). Since activatd molecules are
short lived, we impose a steady state condition on them.

d[A∗]

dt
= k1[A]2 − k2[A][A∗] − k3[A

∗] = 0.
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[A∗] =
k1[A]2

k3 + k2[A]
.

The rate of the reaction is again governed by the formation of the product, i.e. R = k3[A
∗]. Hence,

R =
k1k3[A]2

k3 + k2[A]
.

Now, when [A] is very low, we make the approximation k3 � k2[A]. This means that the rate of
deactivation is very low, because of fewer collisions. Thus, the denominator in the rate law tends to k3,
giving R = k1[A]2. This behaviour is second order with respect to the concentration of the reactant [A].

Problem 8 Give the kinetics of the thermal decomposition of CH3CHO.

Solution We propose that the thermal decomposition of CH3CHO takes place via a chain reaction.

CH3CHO ∆ CH4 + CO

The initiation and propagation steps involve the synthesis of intermediate radicals.

CH3CHO
k1 CH3 + CHO

CH3CHO + CH3
k2 CH4 + CH3CO

CH3CO
k3 CH3 + CO

CH3 + CH3
k4 C2H6

Applying the steady state assumption on the intermediates,

d[ CH3]

dt
= k1[CH3CHO]− k2[CH3CHO][ CH3] + k3[CH3CO ]− 2k4[ CH3]

2 = 0

d[CH3CO ]

dt
= k2[CH3CHO][ CH3]− k3[CH3CO ] = 0

Adding these together,

k1[CH3CHO] = 2k4[ CH3]
2 =⇒ [ CH3] =

√
k1
2k4

[CH3CHO].

Hence, the rate of the reaction is given by the rate of formation of methane, i.e.

R =
d[CH4]

dt
= k2[CH3CHO][ CH3] =

√
k22k1
2k4

[CH3CHO]3/2.

Thus, the rate of the reaction is of 3/2 order with respect to the concentration of acetaldehyde.

Problem 9 On irradiation of propionaldehyde at 30 °C with light of wavelength 3020Å, the quantum
yield for the production of CO is observed to be 0.54. If the incident light intensity is 15 000 erg/s,
calculate the rate of CO formation. What is the light intensity in Einstein per second?

Solution A wavelength of 3020Å corresponds to an energy of E = hc/λ = 6.58× 10−19 J per pho-
ton. Now, using 1 erg = 10−7J, the given light intensity is I = 1.5× 10−3 J s−1. This corresponds to n =
I/E = 2.28× 1015 photons per second, i.e. N = n/NA = 3.79× 10−9 mol photons per second. Thus, the
rate of production of CO is simply φn = 1.23× 1015 molecules per second, or φN = 2.04× 10−9 mol s−1.

The energy of 1mol of photons here is NAE = 3.96× 105 J. Thus, the given light intensity corresponds
to I/(NAE) = 3.79× 10−9 Einstein/s.
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