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Note: All logarithms are natural unless specified otherwise.

Problem 1 Distinguish between the molecularity and order of a chemical reaction. For which type of
reactions are the order and molecularity the same?

Solution The molecularity of a reaction is the number of particles (atoms/molecules/ions) which
must collide simultaneously together for the formation of the products. Consider a reaction with re-
actants A1, A1, . . . , An. At a given temperature, the rate of this reaction can be written in the form
R = k[A1]

α1 [A2]
α2 . . . [An]

αn , where the exponents αi are all determined experimentally. Each exponent
αi is called the order of the reaction with respect to the corresponding reactant Ai. The sum of these
exponents α1 + α2 + . . . αn is called the order of the chemical reaction.

The order and molecularity of a chemical reaction are equal when the reaction is elementary, i.e. it
proceeds in a single step exactly as written in the chemical equation. For example, consider the reaction
aA + bB cC + dD. If this proceeds in a single step, with exactly a molecules of A colliding with
b molecules of B, to produce the products as written, we expect the rate law to have the form R =
k[A]a[B]b. In this case, both order and molecularity of the reaction are a+ b.

Problem 2 While it is expected that a large amount of substance would take a longer time to decom-
pose, the dependence of the half-life (t1/2) on the initial concentration does not indicate this in general.
Explain.

Solution We first derive the general expression for the half life of an nth order reaction, governed
by −dx/dt = kxn. When n = 1, it is easily seen that x(t) = x0e

−kt is the unique solution. Otherwise,
rearranging and integrating, we have 1/xn−1 = 1/xn−1

0 + (n− 1)kt. Substituting x = x0/2, we have

t1/2 =
log 2

k
, n = 1,

t1/2 =
2n−1 − 1

(n− 1)k
· 1

xn−1
0

∝ 1

xn−1
0

, n > 1.

Thus, the half life of a reaction generally decreases with the increase in initial concentration of the re-
actant, and is a contstant for first order reactions. Hence, a larger initial concentration generally means
that the reaction proceeds faster, i.e. the substance decomposes quickly.

We may explain this qualitatively by noting that with a higher initial concentration, reactant particles
are more abundant and hence have a greater probability of colliding with each other and proceeding
with the reaction. This makes the process faster. In the special case of the first order reaction, each
particle decomposes independently of each other, and hence has a mean lifespan of 1/k. Here, the initial
concentration has no effect on the half life.

Problem 3 For a chemical reaction, the rate constant is given by k = 1.5× 10−3 s−1 at 25 °C. If the
initial concentration of the reactant is 0.5mol l−1, determine the rate of the reaction after 30min.

Solution Note that the given reaction must be of the first order, since the rate constant has dimension
T−1. Let the concentration of the only reactant be expressed by x(t). Thus, we have

−dx

dt
= kx.

Integrating, and setting x0 = x(0), we have

x(t) = x0e
−kt.
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Plugging in t = 30min = 1800 s, we have

x(30min) = 0.5× e−1.5×10−3×1800 = 0.034mol l−1.

Thus, the rate of the reaction is given by

R = kx = 1.5× 10−3 × 0.034 = 5.04× 10−5 mol l−1 s−1.

Problem 4 The rate expression for the reaction A(g) + B(g) C(g) is given by R = k[A]
1
2 [B]2.

What changes in rate will occur if the initial concentrations of A and B increase by factors of 4 and 2
respectively?

Solution Using proportionality, we have

R′ = R× 4
1
2 × 22 = 8R.

Hence, the rate of the reaction increases by a factor of 8.

Problem 5 Show that the concentration of the product P for a first order irreversible reaction during
the initial period (time t is very small) is given by the equation [P ] = [A]0 (kt− 1

2k
2t2).

Solution For the irreversible reaction A k P, we have
d[P ]

dt
= −d[A]

dt
= k[A].

Rearranging and integrating over time, ∫ [A]

[A]0

d[A]

[A]
= −

∫ t

0

kdt,

log
[A]

[A]0
= −kt.

Note that if n moles of A react, we must end up with the same number of moles of P. Thus, [P ] = [A]0−[A].
Plugging this in,

[P ] = [A]0(1− e−kt).

We now use the Taylor expansion ex = 1+ x+ 1
2x

2 +O(x3), which serves as an good approximation for
small x. Thus, for small t, we have

[P ] = [A]0

(
kt− 1

2
k2t2

)
.

Problem 6 Prove that the half-life (t1/2) of a first order chemical reaction varies with temperature
according to log t1/2 ∝ 1/T .

Solution First, we derive the expression for t1/2 for a first order reaction. We demand that after
one half-life, the concentration of the reactant halves. Thus, using our previously derived expression
x = x0e

−kt, we see that when x = x0/2,
t1/2 =

log 2

k
.

Now, we invoke the Arrhenius equation which says that the rate constant k varies with temperature T
as

k = Ae−Ea/RT ,

where Ea is the activation energy, assumed to be contstant with temperature. This means that log k =
−
(
1
T

)
Ea

R + logA, which is approximately proportional to −1/T . Combining this with t1/2 ∝ 1/k, we
have log t1/2 = log log 2− log k, which is approximately

log t1/2
?∝ − log k

?∝ 1

T
.

More accurately, a graph of log t1/2 versus 1/T will be linear, with a positive slope, since

log t1/2 = log log 2− logA+

(
1

T

)
Ea

R
.
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Problem 7 For a chemical reaction at 60 °C, a plot of the inverse of the reactant concentration (1/[A])
versus time is a straight line with a slope of 4× 10−2 lmol−1 s−1. Calculate the time required (in seconds)
for 1.0 M of reactant to decrease to 0.25 M.

Solution We denote [A] = x(t). Since the plot of 1/x versus t is a straight line, we must have 1/x = bt+c,
for constants b and c. Differentiating, −dx/x2 = bdt, i.e. −dx/dt = bx2. Thus, this reaction is of the
second order, with rate constant b equal to the slope of the plot.
To calulate the time taken, we simply use the equation of the straight line, ∆(1/x) = b∆t. Thus,

∆t =
1

b

[
1

xf
− 1

x0

]
=

1

4× 10−2

[
1

0.25
− 1

1.0

]
= 25× 3 = 75 s.

Problem 8 Ethyl acetate undergoes hydrolysis reaction in presence of NaOH in an ethanol-water mix-
ture at 30 °C. In an experiment in which 0.05mol dm−3 of each reactant was present at time t = 0, the
time for half change was 1800 s and the time for three-quarters change was 5400 s. Deduce the order of
the reaction and calculate the rate constant. How much time is required to complete 10% of the reaction?

Solution For a general nth order reaction, we use the integrated rate law, 1/xn−1 = 1/xn−1
0 +(n− 1)kt.

Substituting x = x0/2 and x = x0/4, which represent the half and three-quarter reaction points respec-
tively, we obtain

t1/2

t3/4
=

1

2n−1 + 1
.

Thus, we have 2n−1 + 1 = 5400/1800 = 3. Hence, n = 2, and the reaction is of the second order. Using
x0 = 0.05, we have

k =
1

t1/2x0
=

1

1800× 0.05
= 1.1× 10−2 lmol−1 s−1.

For 10% of the reaction, we substitute x = 9x0/10 = 0.045 to obtain

t =
1

k

[
1

x
− 1

x0

]
= 90×

[
1

0.045
− 1

0.05

]
= 200 s.

Problem 9 In a gaseous reaction, when the inverse of the pressure of the reactant is plotted against
time, a straight line is obtained with intercept 150 bar−1 and slope 2× 10−3 bar−1 s−1. Calculate the
half-life for the reaction.

Solution We denote the pressure of the gas as p. We have 1/p = kt + 1/p0, where p0 is the initial
pressure. It is given that 1/p0 = 150 bar−1, the intercept of the plot. Like before, differentiating and
rearranging yields −dp/dt = kp2, a second order rate law with rate constant k equal to the slope of the
plot. When p = p0/2, we have

t1/2 =
1

kp0
=

150

2× 10−3
= 75× 103 s.

Problem 10 In the first order reaction A
k1
k–1

B, the initial concentration of A and B are [A]0 and
0 respectively. At equilibrium the concentration of A and B becomes [A]e and [B]e respectively. Derive
an expression for the time taken by B to attain a concentration equal to 0.5[B]e. For this reaction at
75 °C, let k1 = 1.2× 10−3 s−1 and k−1 = 3.3× 10−2 min−1. Find the time required to produce B to half
of its equilibrium concentration.

Solution We denote [A] = x(t) and [B] = y(t). Note that at any point, the amount of B produced must
equal the amount of A reacted, i.e. y = x0 − x. We thus write

dy

dt
= k1x − k−1y = −(k1 + k−1)y + k1x0.

Rearranging and integrating, ∫ y

0

dy

(k1 + k−1)y − k1x0
= −

∫ t

0

dt,
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log
k1x0 − (k1 + k−1)y

k1x0
= −(k1 + k−1)t.

At equilibrium, we must have dy/dt = 0, thus k1x0 = (k1 + k−1)ye. Plugging this in,

log
ye

ye − y
= (k1 + k−1)t.

Hence, when y = ye/2, we have

(k1 + k−1)t1/2 = log
ye

ye − 1
2ye

= log 2.

Rearranging,
t1/2 =

log 2

k1 + k−1
.

Plugging in the given values for k1 and k−1, and using 60min−1 = 1 s−1, we have

t1/2 =
log 2

1.2× 10−3 + 0.55× 10−3
= 396 s = 6min 36 s.

Problem 11 For a parallel reaction with k1 and k2 equal to 3.42× 10−2 /min and 1.14× 10−2 /min
respectively, calculate the percentage of A converted into B and C, and also find the ratio of [B] and [C]
after 20min. A

k1 B and A
k2 C are in parallel. (We relabel k′1 to k2 for convenience.)

Solution We denote [A] = x(t), [B] = y(t) and [C] = z(t). For a parallel reaction, we write

−dx

dt
=

dy

dt
+

dz

dt
= k1x + k2x = (k1 + k2)x.

This is equivalent to the standard result x(t) = x0e
−(k1+k2)t. Thus,

dy

dt
= k1x0e

−(k1+k2)t, and dz

dt
= k2x0e

−(k1+k2)t.

Rearranging and integrating,

y(t) =
k1

k1 + k2
x0(1− e−(k1+k2)t), and z(t) =

k2
k1 + k2

x0(1− e−(k1+k2)t).

As t → ∞, we have
y∞ =

k1
k1 + k2

x0, and z∞ =
k2

k1 + k2
x0.

Plugging in the given values for k1 and k2, we have

y∞ =
3.42

3.42 + 1.14
x0 = 0.75x0, and z∞ =

1.14

3.42 + 1.14
x0 = 0.25x0.

Thus, 75% of A gets converted into B, and the remaining 25% gets converted into C. Also, note that at
any time, y/z = k1/k2 = 3. Hence, after 20min, the ratio of concentrations of B and C is 3.

Problem 12 The decomposition of ozone, 2 O3 3 O2, is observed to obey the rate law R =
k[O3]

2 [O2]
−1. Suggest a mechanism that agrees with the rate law.

Solution We propose the mechanism

O3
k1
k–1

O2 + O,

O3 + O
k2 2 O2.

At equilibrium, the rates of the forward and backward reactions in the first step are equal, and thus
k1[O3] = k−1[O2][O]. The rate of formation of O2 in the second step is given by k2[O3][O]. Substituting
for [O], we have R = (k1k2/k−1) · [O3]

2/[O2]. Setting k = k1k2/k−1, we obtain the desired rate equation.
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