## CH1101 : Elements of Chemistry

Satvik Saha, 19MS154

August 20, 2019

1. Listing the elements in ascending order of atomic weights, we observe a periodicity of 5 (with some gaps) in their physical states, electrical conductivities and chemical reactivities.

| $\mathrm{Bh}^2$    | $\mathrm{Ik}^5$    | $\mathrm{Uc}^{6}$  | $\mathrm{Dt}^8$        | $\mathrm{Bc}^{11}$ |
|--------------------|--------------------|--------------------|------------------------|--------------------|
| $\mathrm{Ai}^{14}$ | $\mathrm{Ye}^{15}$ | $\mathrm{Sk}^{17}$ | $\mathbf{X}^{\sim 19}$ | $On^{20}$          |
| $\mathbf{E}^{23}$  | $\mathrm{Zw}^{28}$ | $\mathrm{Dr}^{30}$ | $Fq^{32}$              | $\mathrm{Fn}^{36}$ |

We may conclude that the element  $E^{23}$  may be a gas with very low electrical conductivity and very low chemical reactivity.

Similarly, we may predict the existence of a new element X having an atomic weight in the range 17 - 20, which may be a hard, high melting solid with very high electrical conductivity and high chemical reactivity.

2. We will use the relation  $V_m = M/\rho$  between the the molar volume  $V_m$ , the molar mass M and the density  $\rho$ .



We observe that the molar volume has a general upward trend. It peaks sharply at Li, Na, K (Group 1), and has valleys at B, Al (Group 3).

- 3. The power of Mendeleev's periodic table lies in its predictive nature. Seeing the gaps in his table, Mendeleev predicted the existence of new elements, such as 'eka-boron', 'eka-aluminium' and 'ekasilicon', along with their physical and chemical properties with stunning accuracy. He was also able to correct inaccuracies in the then known atomic weights of elements using this device.
- 4. We will use  $c = f\lambda$  and E = hf.

| Frequency                       | Wavelength                      | Energy                          | Event                      |
|---------------------------------|---------------------------------|---------------------------------|----------------------------|
| f                               | $\lambda$                       | E                               |                            |
| $3.8 \times 10^{14} \text{ Hz}$ | $7.9 \times 10^{-7} \mathrm{m}$ | $2.5 \times 10^{-19} \text{ J}$ | Heating food (infrared)    |
| $5.0 \times 10^{14} \text{ Hz}$ | $6.0 \times 10^{-7} \mathrm{m}$ | $3.3 \times 10^{-19} \text{ J}$ | Reading (visible light)    |
| $3.0 \times 10^{11} \text{ Hz}$ | $1.0 \times 10^{-3} \mathrm{m}$ | $2.0 \times 10^{-22} \text{ J}$ | Making popcorn (microwave) |
| $1.2 \times 10^{17} \text{ Hz}$ | $2.5 \times 10^{-9} \mathrm{m}$ | $7.9\times10^{-17}~{\rm J}$     | Dental (X-ray)             |

- 5. We will use  $\lambda = h/p$ , p = mv. An O<sub>2</sub> molecule weighs 32 amu  $\approx 5.3 \times 10^{-26}$  kg. Thus, its momentum is  $2.5 \times 10^{-23}$  kg m/s, and its de Broglie wavelength is  $2.6 \times 10^{-11}$  m = 26 pm. Clearly, this is a small fraction (10.7 %) of the molecular length of O<sub>2</sub>.
- 6. A UV photon will obey the relation  $E = hc/\lambda$ .
  - (a) Each photon has an energy of  $E = 4990 \text{ kJ}/N_A \approx 8.3 \times 10^{-18} \text{ J}$ . Thus, we have  $\lambda = hc/E \approx 24 \text{ nm}$ .
  - (b) A 500 nm photon will have an energy of  $hc/\lambda \approx 4.0 \times 10^{-19}$  J. 21 such photons would have an energy just exceeding that of a UV photon.
  - (c) Although 25 such photons carry a total energy more than that of a single UV photon, they cannot induce mutation in a strand of DNA. This is because exactly the right amount of energy must be supplied to the π-bond in a thymine base in DNA for it to break, and thus mutate. The breaking of such a bond involves the absorption of the photon by an electron in a bonding molecular orbital, promoting it to an antibonding orbital. Such a promotion requires just the right amount of energy the energy difference between the two orbitals.